
Introduction to
MATLAB

Hans-Petter Halvorsen

https://www.halvorsen.blog

Introduction to MATLAB

University of South-Eastern Norway

MATLAB
Introduction to MATLAB

Hans-Petter Halvorsen, 2022.08.17

http://www.halvorsen.blog

http://www.halvorsen.blog/

ii

Preface

Copyright You cannot distribute or copy this document without

permission from the author. You cannot copy or link to this document

directly from other sources, web pages, etc. You should always link to the

proper web page where this document is located, typically

http://www.halvorsen.blog

In this MATLAB Course, you will learn basic MATLAB and how to use

MATLAB in Control and Simulation applications. An introduction to

Simulink and other Tools will also be given.

MATLAB is a tool for technical computing, computation and visualization in

an integrated environment. MATLAB is an abbreviation for MATrix

LABoratory, so it is well suited for matrix manipulation and problem

solving related to Linear Algebra, Modelling, Simulation and Control

applications.

This is a self-paced course based on this document and some short videos

on the way. This document contains lots of examples and self-paced tasks

that the users will go through and solve on their own. The user may go

through the tasks in this document in their own pace and the instructor

will be available for guidance throughout the course.

The MATLAB Course consists of 3 parts:

1. Introduction to MATLAB

2. Modelling, Simulation and Control

3. Simulink and Advanced Topics

In part 1 you will be familiar with the MATLAB environment and learn

basic MATLAB programming.

The course consists of lots of Tasks you should solve while reading this

course manual and watching the videos referred to in the text.

http://www.halvorsen.blog/

iii

 Make sure to bring your headphones for the videos in this

course. The course consists of several short videos that will give you an

introduction to the different topics in the course.

Prerequisites

You should be familiar with undergraduate-level mathematics and have

experience with basic computer operations.

What is MATLAB? MATLAB is a tool for technical computing, computation

and visualization in an integrated environment. MATLAB is an abbreviation

for MATrix LABoratory, so it is well suited for matrix manipulation and

problem solving related to Linear Algebra.

MATLAB is developed by The MathWorks. MATLAB is a short-term for

MATrix LABoratory. MATLAB is in use world-wide by researchers and

universities. For more information, see www.mathworks.com

For more information about MATLAB, etc., please visit

http://www.halvorsen.blog

Online MATLAB Resources:

MATLAB:

http://www.halvorsen.blog/documents/programming/matlab/

MATLAB Basics:

http://www.halvorsen.blog/documents/programming/matlab/matlab_basics.php

Modelling, Simulation and Control with MATLAB:

http://www.halvorsen.blog/documents/programming/matlab/matlab_mic.php

http://www.mathworks.com/
http://www.halvorsen.blog/
http://www.halvorsen.blog/documents/programming/matlab/
http://www.halvorsen.blog/documents/programming/matlab/matlab_basics.php
http://www.halvorsen.blog/documents/programming/matlab/matlab_mic.php

iv

MATLAB Videos:

http://www.halvorsen.blog/documents/video/matlab_basics_videos.php

MATLAB for Students:

http://www.halvorsen.blog/documents/teaching/courses/matlab.php

On these web pages you find video solutions, complete step by step

solutions, downloadable MATLAB code, additional resources, etc.

http://www.halvorsen.blog/documents/video/matlab_basics_videos.php
http://www.halvorsen.blog/documents/teaching/courses/matlab.php

v

Table of Contents

Preface .. ii

Table of Contents.. v

1 Introduction ... 1

2 The MATLAB Environment .. 2

2.1 Command Window ... 3

2.2 Command History .. 4

2.3 Workspace .. 4

2.4 Current Folder ... 6

2.5 Editor ... 7

3 Using the Help System in MATLAB ... 9

4 MATLAB Basics .. 11

4.1 Basic Operations .. 11

Task 1: Basic Operations ... 13

Task 2: Statistics functions .. 15

4.2 Arrays; Vectors and Matrices ... 16

4.2.1 Colon Notation ... 17

Task 3: Vectors and Matrices .. 18

4.3 Tips and Tricks .. 19

4.3.1 Array Operations .. 20

5 Linear Algebra; Vectors and Matrices ... 23

5.1 Vectors ... 23

5.2 Matrices ... 26

5.2.1 Transpose ... 26

vi Table of Contents

MATLAB Course - Part I: Introduction to MATLAB

5.2.2 Diagonal ... 26

5.2.3 Triangular ... 27

5.2.4 Matrix Multiplication ... 28

5.2.5 Matrix Addition .. 29

5.2.6 Determinant .. 29

5.2.7 Inverse Matrices .. 30

5.3 Eigenvalues .. 31

Task 4: Matrix manipulation ... 32

5.4 Solving Linear Equations ... 32

Task 5: Solving Linear Equations .. 35

6 M-files; Scripts and user-define functions 36

6.1 Scripts vs. function Files ... 36

6.2 Scripts ... 37

Task 6: Script ... 39

6.3 Functions .. 40

Task 7: User-defined function ... 43

Task 8: User-defined function ... 43

7 Plotting .. 45

Task 9: Plotting .. 46

7.1 Plotting Multiple Data Sets in One Graph 47

Task 10: Plot of dynamic system ... 50

7.2 Displaying Multiple Plots in one Figure – Sub-Plots 51

Task 11: Sub-plots... 52

7.3 Custimizing ... 52

7.4 Other Plots.. 56

Task 12: Other Plots .. 56

vii Table of Contents

MATLAB Course - Part I: Introduction to MATLAB

8 Flow Control and Loops .. 57

8.1 Introduction .. 57

8.2 If-else Statement... 57

Task 13: If-else Statements .. 59

8.3 Switch and Case Statement .. 60

Task 14: Switch-Case Statements .. 60

8.4 For loop .. 61

Task 15: Fibonacci Numbers ... 61

8.5 While loop... 62

Task 16: While Loop... 63

8.6 Additional Tasks .. 63

Task 17: For Loops .. 63

Task 18: If-else Statement ... 64

9 Mathematics ... 65

9.1 Basic Math Functions .. 65

Task 19: Basic Math function ... 65

9.2 Statistics .. 65

Task 20: Statistics ... 65

9.3 Trigonometric Functions ... 66

Task 21: Conversion .. 66

Task 22: Trigonometric functions on right triangle 66

Task 23: Law of cosines.. 68

Task 24: Plotting ... 68

9.4 Complex Numbers ... 68

Task 25: Complex numbers... 72

Task 26: Complex numbers... 72

viii Table of Contents

MATLAB Course - Part I: Introduction to MATLAB

9.5 Polynomials .. 72

Task 27: Polynomials ... 73

Task 28: Polynomials ... 73

Task 29: Polynomial Fitting ... 74

10 Additional Tasks ... 75

Task 30: User-defined function .. 75

Task 31: MATLAB Script ... 75

Task 32: Cylinder surface area .. 76

Task 33: Create advanced expressions in MATLAB 76

Task 34: Solving Equations ... 77

Task 35: Pre-allocating of variables and vectorization 77

Task 36: Nested For Loops .. 79

Appendix A: MATLAB Functions... 82

Built-in Constants .. 82

Basic Functions .. 82

Linear Algebra ... 83

Plotting ... 83

Logical Operators ... 84

Complex Numbers .. 84

1

1 Introduction

Additional Resources, Videos, etc. are available from:

http://www.halvorsen.blog/documents/programming/matlab

Part I: Introduction to MATLAB consists of the following topics:

• The MATLAB Environment

• Using the Help System in MATLAB

• MATLAB Basics

• Linear Algebra; Vectors and Matrices

• M files; Scripts and User-defined functions

• Plotting

• Flow Control and Loops; For and While Loops, If and Case

statements

• Mathematics

• Additional Tasks

http://www.halvorsen.blog/documents/programming/matlab

2

2 The MATLAB

Environment

The MATLAB Environment consists of the following main parts:

• Command Window

• Command History

• Workspace

• Current Folder

• Editor

Below we see the MATLAB environment:

 Before you start, you should watch the video “Working in the

Development Environment”.

3 The MATLAB Environment

MATLAB Course - Part I: Introduction to MATLAB

The video is available from:

https://www.halvorsen.blog/documents/teaching/courses/matlab/matlab1.php

2.1 Command Window

The Command Window is the main window in MATLAB. Use the

Command Window to enter variables and to run functions and M-files

scripts (more about m-files later).

You type all your commands after the command Prompt “>>”, e.g.,

defining the following matrix:

𝐴 = [
1 2
0 3

]

The MATLAB syntax is as follows:

>> A = [1 2;0 3]

Or

>> A = [1,2;0,3]

If you, for an example, want to find the answer to

𝑎 + 𝑏,𝑤ℎ𝑒𝑟𝑒 𝑎 = 4, 𝑏 = 3

Type like this:

4 The MATLAB Environment

MATLAB Course - Part I: Introduction to MATLAB

>>a = 4

>>b = 3

>>a + b

MATLAB then responds:

ans =

 7

2.2 Command History

Statements you enter in the Command Window are logged in the

Command History. From the Command History, you can view and search

for previously run statements, as well as copy and execute selected

statements. You can also create an M-file from selected statements.

2.3 Workspace

The Workspace window list all your variables used as long you have

MATLAB opened.

5 The MATLAB Environment

MATLAB Course - Part I: Introduction to MATLAB

You could also use the following command

>>who

This command list all the commands used

or

>>whos

This command lists all the command with the current values, dimensions,

etc.

The command clear, will clear all the variables in your workplace.

>>clear

Save your data:

You may also save all your variables and data to a text file (.mat file),

this is useful if you want to save your data and use it for later.

Select the variables you want to save and right-click and select “Save

As…”:

6 The MATLAB Environment

MATLAB Course - Part I: Introduction to MATLAB

MATLAB also have commands for this: save/load and diary.

2.4 Current Folder

The “Current Folder” window lists all m files, etc. available in the current

directory.

7 The MATLAB Environment

MATLAB Course - Part I: Introduction to MATLAB

You should set your working folder as the Current Directory or set your

working folder as part of the search path, if you don’t MATLAB will not find

your files.

Search Path:

You need to use this if you want MATLAB to find your scripts and functions

you want to use.

2.5 Editor

The Editor is used to create scripts and m-files. Click the “New Script”

button in the Toolbar

8 The MATLAB Environment

MATLAB Course - Part I: Introduction to MATLAB

When you learn about m-files (scripts and functions) in a later chapter you

will be using this editor to enter your commands and save them.

Note! In the beginning of the course (chapter 1-5) we will only use the

Command Window. In chapter 6 we will start using the Editor.

9

3 Using the Help

System in MATLAB

The Help system in MATLAB is quite comprehensive, so make sure you are

familiar with how the help system works.

when clicking the “Help” button, the following window appears:

You may also type “Help” in the Command window:

10 Using the Help System in MATLAB

MATLAB Course - Part I: Introduction to MATLAB

MATLAB answers with links to lots of Help topics. You may also type more

specific, e.g., “Help elfun” (Elementary Math Functions), and MATLAB will

list all functions according to the specific category.

If you type “help <functionname>” you will get specific help about this

function.

You may also type “doc <topic>” to open the Help window on the

specific topic of interest.

Searching:

We can use the help keyword when we want to get help for a specific

function, but if we want to search for all functions, etc. with a specific

keyword you may use the lookfor command.

Example:

lookfor plot

[End of Example]

11

4 MATLAB Basics

 Before you start, you should watch the video “Getting Started with

MATLAB”

The video is available from:

https://www.halvorsen.blog/documents/teaching/courses/matlab/matlab1.php

4.1 Basic Operations

Variables:

Variables are defined with the assignment operator, “=”. MATLAB is

dynamically typed, meaning that variables can be assigned without

declaring their type, and that their type can change. Values can come

from constants, from computation involving values of other variables, or

from the output of a function.

Example:

>> x = 17

x =

 17

>> x = 'hat'

x =

hat

>> x = [3*4, pi/2]

x =

 12.0000 1.5708

>> y = 3*sin(x)

y =

 -1.6097 3.0000

[End of Example]

Note! MATLAB is case sensitive! The variables 𝑥 and 𝑋 are not the same.

Note! Unlike many other languages, where the semicolon is used to

terminate commands, in MATLAB the semicolon serves to suppress the

output of the line that it concludes.

12 MATLAB Basics

MATLAB Course - Part I: Introduction to MATLAB

>> a=5

a =

 5

>> a=6;

>>

As you see, when you type a semicolon (;) after the command, MATLAB

will not respond. This is very useful because sometimes you want MATLAB

to respond, while in other situations that is not necessary.

Built-in constants:

MATLAB have several built-in constants. Some of them are explained

here:

Name Description

i, j Used for complex numbers, e.g., z=2+4i
pi 𝜋
inf ∞, Infinity
NaN Not A Number. If you, e.g., divide by zero, you get NaN

Naming a Variable Uniquely:

To avoid choosing a name for a new variable that might conflict with a

name already in use, check for any occurrences of the name using the

which command:

which -all variablename

Example:

>> which -all pi

built-in (C:\Matlab\R2007a\toolbox\matlab\elmat\pi)

You may also use the iskeyword command. This command causes

MATLAB to list all reserved names.

>> iskeyword

ans =

 'break'

 'case'

 'catch'

 'classdef'

13 MATLAB Basics

MATLAB Course - Part I: Introduction to MATLAB

 'continue'

 'else'

 'elseif'

 'end'

 'for'

 'function'

 'global'

 'if'

 'otherwise'

 'persistent'

 'return'

 'switch'

 'try'

 'while'

Note! You cannot assign these reserved names as your variable names.

Note! MATLAB allows you to reassign built-in function names as variable

names, but that is not recommended! – so be carefully when you select

the name of your variables!

Example:

>> sin=4

sin =

 4

>> sin(3)

??? Index exceeds matrix dimensions.

In this example you have defined a variable “sin” – but “sin” is also a

built-in function – and this function will no longer work!

If you accidently do so, use the clear command to reset it back to normal.

[End of Example]

Task 1: Basic Operations

Type the following in the Command window:

>>y=16;

>>z=3;

>>y+z

14 MATLAB Basics

MATLAB Course - Part I: Introduction to MATLAB

Note! When you use a semicolon, no output will be displayed. Try the

code above with and without semicolon.

Note! Some functions display output even if you use semicolon, like plot,

etc.

Other basic operations are:

>>16-3

>>16/3

>>16*3

→ Try them.

[End of Task]

Built-in Functions:

Here are some descriptions for the most used basic built-in MATLAB

functions.

Function Description Example

help MATLAB displays the help information available >>help

help

<function>

Display help about a specific function >>help plot

who, whos who lists in alphabetical order all variables in
the currently active workspace.

>>who

>>whos

clear Clear variables and functions from memory. >>clear

>>clear x

size Size of arrays, matrices >>x=[1 2 ; 3 4];

>>size(A)

length Length of a vector >>x=[1:1:10];

>>length(x)

format Set output format

disp Display text or array >>A=[1 2;3 4];

>>disp(A)

plot This function is used to create a plot >>x=[1:1:10];

>>plot(x)

>>y=sin(x);

>>plot(x,y)

clc Clear the Command window >>cls

rand Creates a random number, vector or matrix >>rand

>>rand(2,1)

max Find the largest number in a vector >>x=[1:1:10]

>>max(x)

min Find the smallest number in a vector >>x=[1:1:10]

>>min(x)

mean Average or mean value >>x=[1:1:10]

>>mean(x)

std Standard deviation >>x=[1:1:10]

>>std(x)

Before you start, you should use the Help system in MATLAB to read more

about these functions. Type “help <functionname>” in the Command

window.

15 MATLAB Basics

MATLAB Course - Part I: Introduction to MATLAB

Task 2: Statistics functions

Create a random vector with 100 random numbers between 0 and 100.

Find the minimum value, the maximum value, the mean and the standard

deviation using some of the built-in functions in MATLAB listed above.

[End of Task]

16 MATLAB Basics

MATLAB Course - Part I: Introduction to MATLAB

4.2 Arrays; Vectors and Matrices

 Before you start, you should watch the video “Working with

Arrays”.

The video is available from:

https://www.halvorsen.blog/documents/teaching/courses/matlab/matlab1.php

Matrices and vectors (Linear Algebra) are the basic elements in MATLAB

and also the basic elements in control design theory. So, it is important

you know how to handle vectors and matrices in MATLAB.

A general matrix 𝐴 may be written like this:

𝐴 = [

𝑎11 ⋯ 𝑎1𝑚
⋮ ⋱ ⋮
𝑎𝑛1 ⋯ 𝑎𝑛𝑚

] ∈ 𝑅𝑛𝑥𝑚

In MATLAB we type vectors and matrices like this:

𝐴 = [
1 2
3 4

]

>> A = [1 2; 3 4]

A = 1 2

 3 4

or:

>> A = [1, 2; 3, 4]

A = 1 2

 3 4

→ To separate rows, we use a semicolon “;”

→ To separate columns, we use a comma “,” or a space “ “.

To get a specific part of a matrix, we can type like this:

>> A(2,1)

ans =

 3

or:

>> A(:,1)

ans =

17 MATLAB Basics

MATLAB Course - Part I: Introduction to MATLAB

 1

 3

or:

>> A(2,:)

ans =

 3 4

From 2 vectors x and y we can create a matrix like this:

>> x = [1; 2; 3];

>> y = [4; 5; 6];

>> B = [x y]

B = 1 4

 2 5

 3 6

4.2.1 Colon Notation

The “colon notation” is very useful for creating vectors:

Example:

This example shows how to use the colon notation creating a vector and

do some calculations.

18 MATLAB Basics

MATLAB Course - Part I: Introduction to MATLAB

[End of Example]

Task 3: Vectors and Matrices

Type the following vector in the Command window:

𝑥 = [
1
2
3

]

Type the following matrix in the Command window:

𝐴 = [
0 1
−2 −3

]

Type the following matrix in the Command window:

𝐶 = [
−1 2 0
4 10 −2
1 0 6

]

→ Use Use MATLAB to find the value in the second row and the third

column of matrix 𝐶.

→ Use MATLAB to find the second row of matrix 𝐶.

→ Use MATLAB to find the third column of matrix 𝐶.

[End of Task]

Deleting Rows and Columns:

You can delete rows and columns from a matrix using just a pair of square

brackets [].

19 MATLAB Basics

MATLAB Course - Part I: Introduction to MATLAB

Example:

Given:

𝐴 = [
0 1
−2 −3

]

To delete the second column of a matrix 𝐴, use:

>>A=[0 1; -2 -3];

>>A(:,2) = []

A =

 0

 -2

[End of Example]

4.3 Tips and Tricks

Naming conversions:

When creating variables and constants, make sure you create a name that

is not already exists in MATLAB. Note also that MATLAB is case sensitive!

The variables x and X are not the same.

Use the which command to check if the name already exists: which –all

<your name>

Example:

>> which -all sin

built-in (C:\Matlab\R2007a\toolbox\matlab\elfun\@double\sin) %

double method

built-in (C:\Matlab\R2007a\toolbox\matlab\elfun\@single\sin) %

single method

Large or small numbers:

If you need to write large or small numbers, like 2 𝑥 105 , 7.5 𝑥 10−8you can

use the “e” notation, e.g.:

>> 2e5

ans =

20 MATLAB Basics

MATLAB Course - Part I: Introduction to MATLAB

 200000

>> 7.5e-8

ans =

 7.5000e-008

Line Continuation:

For large arrays, it may be difficult to fit one row on one command line.

We may then split the row across several command lines by using the line

continuation operator “...”.

Example:

>> x=[1 2 3 4 5 ...

6 7 8 9 10]

x =

 1 2 3 4 5 6 7 8 9 10

Multiple commands on same line:

It is possible to type several commands on the same line. In some cases

this is a good idea to save space.

Example:

>> x=1,y=2,z=3

x =

 1

y =

 2

z =

 3

4.3.1 Array Operations

We have the following basic matrix operations:

21 MATLAB Basics

MATLAB Course - Part I: Introduction to MATLAB

The basic matrix operations can be modified for element-by-element

operations by preceding the operator with a period. The modified

operations are known as array operations.

Given

𝐴 = [
𝑎11 𝑎12
𝑎21 𝑎22

] , 𝐵 = [
𝑏11 𝑏12
𝑏21 𝑏22

]

Then

𝐴.∗ 𝐵 = [
𝑎11𝑏11 𝑎12𝑏12
𝑎21𝑏21 𝑎22𝑏22

]

The elements of A.*B are the products of the corresponding elements of A

and B.

We have the following array operators:

Example:

>> A = [1; 2; 3]

A =

 1

 2

 3

>> B = [-6; 7; 10]

B =

 -6

 7

 10

>> A*B

??? Error using ==> mtimes

Inner matrix dimensions must agree.

>> A.*B

22 MATLAB Basics

MATLAB Course - Part I: Introduction to MATLAB

ans =

 -6

 14

 30

[End of Example]

23

5 Linear Algebra;

Vectors and Matrices

Linear Algebra is a branch of mathematics concerned with the study of

matrices, vectors, vector spaces (also called linear spaces), linear maps

(also called linear transformations), and systems of linear equations.

MATLAB are well suited for Linear Algebra. This chapter assumes you have

some basic understanding of Linear Algebra and matrices and vectors.

Here are some useful functions for Linear Algebra in MATLAB:

Function Description Example

rank Find the rank of a matrix. Provides an estimate of
the number of linearly independent rows or
columns of a matrix A.

>>A=[1 2; 3 4]

>>rank(A)

det Find the determinant of a square matrix >>A=[1 2; 3 4]

>>det(A)

inv Find the inverse of a square matrix >>A=[1 2; 3 4]

>>inv(A)

eig Find the eigenvalues of a square matrix >>A=[1 2; 3 4]

>>eig(A)

ones Creates an array or matrix with only ones >>ones(2)

>>ones(2,1)

eye Creates an identity matrix >>eye(2)

diag Find the diagonal elements in a matrix >>A=[1 2; 3 4]

>>diag(A)

Type “help matfun” (Matrix functions - numerical linear algebra) in the

Command Window for more information, or type “help elmat”

(Elementary matrices and matrix manipulation).

You may also type “help <functionname>” for help about a specific

function.

Before you start, you should use the Help system in MATLAB to read more

about these functions. Type “help <functionname>” in the Command

window.

5.1 Vectors

Given a vector 𝑥:

24 Linear Algebra; Vectors and Matrices

MATLAB Course - Part I: Introduction to MATLAB

𝑥 = [

𝑥1
𝑥2
⋮
𝑥𝑛

] ∈ 𝑅𝑛

Example:

Given:

𝑥 = [
1
2
3

]

>> x=[1; 2; 3]

x =

 1

 2

 3

The Transpose of vector x:

𝑥𝑇 = [𝑥1 𝑥2 ⋯ 𝑥𝑛] ∈ 𝑅1𝑥𝑛

>> x'

ans =

 1 2 3

[End of Example]

The Length of vector x:

‖𝑥‖ = √𝑥𝑇𝑥 = √𝑥1
2 + 𝑥2

2 + ⋯+ 𝑥𝑛
2

Example:

The length of a vector most makes sense for 2 or 3 dimensional vectors.

Given the following vector:

𝑣 = [3, 4]

Note! Sometimes you also see it like this: �⃑�

25 Linear Algebra; Vectors and Matrices

MATLAB Course - Part I: Introduction to MATLAB

It can be visualized like this:

In order to find the length of 𝑣 we use Pythagoras like this:

|𝑣| = √32 + 42 = √9+ 16 = √25 = 5

MATLAB:

>> v = [3,4]'

>> l = sqrt(3^2 + 4^2)

 l =

 5

Or using the general formula shown above (which works for any

dimensions):

>> l = sqrt(v'*v)

l =

 5

Note!

>> length(v)

ans =

 2

The built-in function length() don’t give the actual length of the vector but

finds number of elements in the vector or array, i.e., the size of the array.

[End of Example]

Orthogonality:

26 Linear Algebra; Vectors and Matrices

MATLAB Course - Part I: Introduction to MATLAB

𝑥𝑇𝑦 = 0

5.2 Matrices

Given a matrix 𝐴:

𝐴 = [

𝑎11 ⋯ 𝑎1𝑚
⋮ ⋱ ⋮
𝑎𝑛1 ⋯ 𝑎𝑛𝑚

] ∈ 𝑅𝑛𝑥𝑚

Example:

𝐴 = [
0 1
−2 −3

]

>> A=[0 1;-2 -3]

A =

 0 1

 -2 -3

[End of Example]

5.2.1 Transpose

The Transpose of matrix 𝐴:

𝐴𝑇 = [

𝑎11 ⋯ 𝑎𝑛1
⋮ ⋱ ⋮
𝑎1𝑚 ⋯ 𝑎𝑛𝑚

] ∈ 𝑅𝑚𝑥𝑛

Example:

𝐴𝑇 = [
0 1
−2 −3

]
𝑇

= [
0 −2
1 −3

]

>> A'

ans =

 0 -2

 1 -3

[End of Example]

5.2.2 Diagonal

The Diagonal elements of matrix A is the vector

27 Linear Algebra; Vectors and Matrices

MATLAB Course - Part I: Introduction to MATLAB

𝑑𝑖𝑎𝑔(𝐴) = [

𝑎11
𝑎22
⋮
𝑎𝑝𝑝

] ∈ 𝑅𝑝=min (𝑥,𝑚)

Example:

>> diag(A)

ans =

 0

 -3

[End of Example]

The Diagonal matrix Λ is given by:

Λ = [

𝜆1 0 ⋯ 0
0 𝜆2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝜆𝑛

] ∈ 𝑅𝑛𝑥𝑛

Given the Identity matrix I:

𝐼 = [

1 0 ⋯ 0
0 1 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 1

] ∈ 𝑅𝑛𝑥𝑚

Example:

>> eye(3)

ans =

 1 0 0

 0 1 0

 0 0 1

[End of Example]

5.2.3 Triangular

Lower Triangular matrix L:

𝐿 = [
. 0 0
⋮ ⋱ 0
. ⋯ .

]

28 Linear Algebra; Vectors and Matrices

MATLAB Course - Part I: Introduction to MATLAB

Upper Triangular matrix U:

𝑈 = [

. ⋯ .
0 ⋱ ⋮
0 0 .

]

5.2.4 Matrix Multiplication

Given the matrices 𝐴 ∈ 𝑅𝑛𝑥𝑚 and 𝐵 ∈ 𝑅𝑚𝑥𝑝, then

𝐶 = 𝐴𝐵 ∈ 𝑅𝑛𝑥𝑝

where

𝑐𝑗𝑘 =∑𝑎𝑗𝑙𝑏𝑙𝑘

𝑛

𝑙=1

Example:

>> A = [0 1; -2 -3]

A =

 0 1

 -2 -3

>> B = [1 0;3 -2]

B =

 1 0

 3 -2

>> A*B

ans =

 3 -2

 -11 6

→ Check the answer by manually calculating using pen & paper.

[End of Example]

Note!

Note!

29 Linear Algebra; Vectors and Matrices

MATLAB Course - Part I: Introduction to MATLAB

𝐴𝐵 ≠ 𝐵𝐴

𝐴(𝐵𝐶) = (𝐴𝐵)𝐶

(𝐴 + 𝐵)𝐶 = 𝐴𝐶 + 𝐵𝐶

𝐶(𝐴 + 𝐵) = 𝐶𝐴 + 𝐶𝐵

5.2.5 Matrix Addition

Given the matrices 𝐴 ∈ 𝑅𝑛𝑥𝑚 and 𝐵 ∈ 𝑅𝑛𝑥𝑚, then

𝐶 = 𝐴 + 𝐵 ∈ 𝑅𝑛𝑥𝑚

Example:

>> A = [0 1; -2 -3]

>> B = [1 0; 3 -2]

>> A + B

ans =

 1 1

 1 -5

→ Check the answer by manually calculating using pen & paper.

[End of Example]

5.2.6 Determinant

Given a matrix 𝐴 ∈ 𝑅𝑛𝑥𝑛, then the Determinant is given by:

𝑑𝑒𝑡(𝐴) = |𝐴|

Given a 2𝑥2 matrix:

𝐴 = [
𝑎11 𝑎12
𝑎21 𝑎22

] ∈ 𝑅2𝑥2

Then

𝑑𝑒𝑡(𝐴) = |𝐴| = 𝑎11𝑎22 − 𝑎21𝑎12

Example:

30 Linear Algebra; Vectors and Matrices

MATLAB Course - Part I: Introduction to MATLAB

A =

 0 1

 -2 -3

>> det(A)

ans =

 2

→ Check the answer by manually calculating using pen & paper.

[End of Example]

Notice that

det(𝐴𝐵) = det(𝐴) det(𝐵)

and

det(𝐴𝑇) = det (𝐴)

Example:

>> det(A*B)

ans =

 -4

>> det(A)*det(B)

ans =

 -4

>> det(A')

ans =

 2

>> det(A)

ans =

 2

[End of Example]

5.2.7 Inverse Matrices

The inverse of a quadratic matrix 𝐴 ∈ 𝑅𝑛𝑥𝑛 is defined by:

𝐴−1

if

𝐴𝐴−1 = 𝐴−1𝐴 = 𝐼

31 Linear Algebra; Vectors and Matrices

MATLAB Course - Part I: Introduction to MATLAB

For a 2𝑥2 matrix we have:

𝐴 = [
𝑎11 𝑎12
𝑎21 𝑎22

] ∈ 𝑅2𝑥2

The inverse 𝐴−1 is then given by

𝐴−1 =
1

𝑑𝑒𝑡 (𝐴)
[
𝑎22 −𝑎12
−𝑎21 𝑎11

] ∈ 𝑅2𝑥2

Example:

A =

 0 1

 -2 -3

>> inv(A)

ans =

 -1.5000 -0.5000

 1.0000 0

→ Check the answer by manually calculating using pen & paper.

Notice that:

𝐴𝐴−1 = 𝐴−1𝐴 = 𝐼

[End of Example]

5.3 Eigenvalues

Given 𝐴 ∈ 𝑅𝑛𝑥𝑛, then the Eigenvalues is defined as:

𝑑𝑒𝑡(𝜆𝐼 − 𝐴) = 0

Example:

A =

 0 1

 -2 -3

>> eig(A)

ans =

 -1

 -2

→ Check the answer by manually calculating using pen & paper.

32 Linear Algebra; Vectors and Matrices

MATLAB Course - Part I: Introduction to MATLAB

[End of Example]

Task 4: Matrix manipulation

In this task we will practice on entering matrices and perform basic matrix

operations.

Given the matrices 𝐴, 𝐵 and 𝐶:

𝐴 = [
0 1
−2 −3

] , 𝐵 = [
1 0
3 −2

] , 𝐶 = [
1 −1
−2 2

]

→ Solve the following basic matrix operations using MATLAB:

• 𝐴 + 𝐵

• 𝐴 − 𝐵

• 𝐴𝑇

• 𝐴−1

• 𝑑𝑖𝑎𝑔(𝐴), 𝑑𝑖𝑎𝑔(𝐵)

• 𝑑𝑒𝑡(𝐴), 𝑑𝑒𝑡(𝐵)

• 𝑑𝑒𝑡(𝐴𝐵)

• 𝑒𝑖𝑔(𝐴)

where eig = Eigenvalues, diag = Diagonal, det = Determinant

→ Use MATLAB to “prove” the following:

• 𝐴𝐵 ≠ 𝐵𝐴

• 𝐴(𝐵𝐶) = (𝐴𝐵)𝐶

• (𝐴 + 𝐵)𝐶 = 𝐴𝐶 + 𝐵𝐶

• 𝐶(𝐴 + 𝐵) = 𝐶𝐴 + 𝐶𝐵

• det(𝐴𝐵) = det(𝐴) det(𝐵)

• det(𝐴𝑇) = det (𝐴)

• 𝐴𝐴−1 = 𝐴−1𝐴 = 𝐼

where 𝐼 is the unit matrix

By “proving”, I mean enter the left side in MATLAB, then enter the right

side, then check if you get the same results or not. In that way you have

“proved” it.

[End of Task]

5.4 Solving Linear Equations

33 Linear Algebra; Vectors and Matrices

MATLAB Course - Part I: Introduction to MATLAB

MATLAB can easily be used to solve a large amount of linear equations

using built-in functions.

When dealing with large matrices (finding inverse of A is time-consuming)

or the inverse doesn’t exist other methods are used to find the solution,

such as:

• Least Square method

• LU factorization

• Singular value Decomposition

• Etc.

In MATLAB we can also simply use the backslash operator “\” in order to

find the solution like this:

x = A\b

Example:

Given the following equations:

𝑥1 + 2𝑥2 = 5

3𝑥1 + 4𝑥2 = 6

7𝑥1 + 8𝑥2 = 9

We can set in on matrix form:

𝐴𝑥 = 𝑏

But as you know, it only works when 𝐴 is a square matrix.

From the equations we find:

𝐴 = [
1 2
3 4
7 8

]

𝑏 = [
5
6
9

]

Normally we can find the solution by taking the inverse of the A matrix:

𝑥 = 𝐴−1𝑏

34 Linear Algebra; Vectors and Matrices

MATLAB Course - Part I: Introduction to MATLAB

As you can see, the 𝐴 matrix is not a quadratic matrix, meaning we

cannot find the inverse of 𝐴, thus 𝑥 = 𝐴−1𝑏 will not work (try it in MATLAB

and see what happens).

Let’s try (just to verify that it is not working):

>> A = [1 2; 3 4; 7 8];

>> b = [5;6;9];

>> x = inv(A)*b

Error using inv

Matrix must be square.

As expected, MATLAB cannot solve this because the 𝐴 matrix is not

square.

So, we can solve it using the backslash operator “\”:

A = [1 2; 3 4; 7 8];

b = [5;6;9];

x = A\b

This gives the answer:

x =

 -3.5000

 4.1786

Meaning 𝑥1 = −3.5 and 𝑥2 = 4.1786

Actually, when using the backslash operator “\” in MATLAB it uses the LU

factorization as part of the algorithm to find the solution.

We could have used the known Least Square Method formula as well.

Given:

𝐴𝑥 = 𝑏

Then the Least Square Method formula is given by (how we can derive

this equation will not be shown here):

𝑥𝐿𝑆 = (𝐴𝑇𝐴)−1𝐴𝑇𝑏

Let’s try:

35 Linear Algebra; Vectors and Matrices

MATLAB Course - Part I: Introduction to MATLAB

A = [1 2; 3 4; 7 8];

b = [5;6;9];

x_ls = inv(A'*A)*A'*b

This gives the same answer:

x =

 -3.5000

 4.1786

This means using the Least Square formula also works fine in this case. It

gives same results as using the backslash. "\" operator in this case. In

general, the backslash operator is better to use because it finds the best

way to solve the equations. MATLAB does the "dirty work" for you.

Task 5: Solving Linear Equations

Given the equations:

𝑥1 + 2𝑥2 = 5

3𝑥1 + 4𝑥2 = 6

Set the equations on the following form:

𝐴𝑥 = 𝑏

→ Find 𝐴 and 𝑏 and define them in MATLAB.

Solve the equations, i.e., find 𝑥1, 𝑥2, using MATLAB. It can be solved like

this:

𝐴𝑥 = 𝑏 → 𝑥 = 𝐴−1𝑏

[End of Task]

36

6 M-files; Scripts and

user-define functions

Scripts or m-files are text files containing MATLAB code. Use the MATLAB

Editor or another text editor to create a file containing the same

statements you would type at the MATLAB command line. Save the file

under a name that ends with “.m”.

We can either create a Script or a Function. The difference between a

script and a function will be explained below. Both will be saved as m-

files, but the usage will be slightly different.

 Before you start, you should watch the video “Writing a MATLAB

Program”.

The video is available from:

https://www.halvorsen.blog/documents/teaching/courses/matlab/matlab1.php

Below we see the MATLAB Editor that we use to create Scripts and

Functions (both are saved as .m files):

6.1 Scripts vs. function Files

https://www.halvorsen.blog/documents/teaching/courses/matlab/matlab1.php

37 M-files; Scripts and user-define

functions

MATLAB Course - Part I: Introduction to MATLAB

It is important to know the difference between a Script and a Function.

Scripts:

• A collection of commands that you would execute in the Command

Window

• Used for automating repetitive tasks

Functions:

• Operate on information (inputs) fed into them and return outputs

• Have a separate workspace and internal variables that is only valid

inside the function

• Your own user-defined functions work the same way as the built-in

functions you use all the time, such as plot(), rand(), mean(), std(),

etc.

MATLAB have lots of built-in functions, but very often we need to create

our own functions (these are called user-defined functions)

Below we will learn more about Scripts and Functions.

6.2 Scripts

A Script is a collection of MATLAB commands and functions that is bundled

together in a m-file. When you run the Script, all the commands are

executed sequentially.

The built-in Editor for creating and modifying m-files are shown below:

38 M-files; Scripts and user-define

functions

MATLAB Course - Part I: Introduction to MATLAB

In the Editor you create a sequence of MATLAB commands that you save

as a m-file (the file extension ends with .m). Push the “Run” button when

you want to run your program.

39 M-files; Scripts and user-define

functions

MATLAB Course - Part I: Introduction to MATLAB

If the code contains errors or warning the MATLAB compiler will let you

know by displaying some colors symbols to the right in the Editor, as

shown on the Figure above.

Running a m-file in the Command window (just type the name of the m-

file and hit Enter to run the m-file):

You may open or edit a m-file using the open button in the toolbar.

An alternative is to type “Edit <name of m-file>” from the Command

window.

Task 6: Script

40 M-files; Scripts and user-define

functions

MATLAB Course - Part I: Introduction to MATLAB

Create a Script (M-file) where you create a vector with random data and

find the average and the standard deviation

Run the Script from the Command window.

[End of Task]

6.3 Functions

MATLAB includes more than 1000 built-in functions that you can use, but

sometimes you need to create your own functions.

To define your own function in MATLAB, use the following syntax:

function outputs = function_name(inputs)

% documentation

…

Or in more detail:

The first line of a function M-file starts with the keyword function. It gives

the function name and order of arguments. In example above, we have 3

input arguments (i.e, 𝑎, 𝑏, 𝑐) and 2 output arguments (i.e, 𝑥, 𝑦).

The first line of the help text is the H1 line, which MATLAB displays when

you use the lookfor command or the help command.

41 M-files; Scripts and user-define

functions

MATLAB Course - Part I: Introduction to MATLAB

Note! It is recommended that you use lowercase in the function name.

You should neither use spaces; use an underscore “_” if you need to

separate words.

A Function can have one or more inputs and one or more outputs.

Below we see how to declare a function with one input and one output:

Below we see how to declare a function with multiple inputs and multiple

outputs:

Example:

Here is a simple Example:

function answer = add(x,y)

% this function adds 2 numbers

answer = x + y;

Note! The function name (add) and the name of the file (“add.m”) need

to be identical.

You may use the function like this:

42 M-files; Scripts and user-define

functions

MATLAB Course - Part I: Introduction to MATLAB

% Example 1:

add(2,3)

% Example 2:

a = 4;

b = 6;

add(a,b);

% Example 3:

answer = add(a,b)

[End of Example]

You may create your own functions and save them as a m-file. Functions

are M-files that can accept input arguments and return output arguments.

Functions operate on variables within their own workspace, separate from

the workspace you access at the MATLAB command prompt.

Note! The name of the M-file and of the function should be the same!

Example:

Create a function called “linsolution” which solve 𝐴𝑥 = 𝑏 → 𝑥 = 𝐴−1𝑏

Below we see how the m-file for this function looks like:

43 M-files; Scripts and user-define

functions

MATLAB Course - Part I: Introduction to MATLAB

You may define 𝐴 and 𝑏 in the Command window and the use the

function on order to find 𝑥:

>> A=[1 2;3 4];

>> b=[5;6];

>> x = linsolution(A,b)

x =

 -4.0000

 4.5000

After the function declaration (function [x] = linsolution(A,b)) in

the m.file, you may write a description of the function. This is done with

the Comment sign “%” before each line.

From the Command window you can then type “help <function name>”

in order to read this information:

>> help linsolution

 Solves the problem Ax=b using x=inv(A)*b

 Created By Hans-Petter Halvorsen

[End of Example]

Naming a Function Uniquely:

To avoid choosing a name for a new function that might conflict with a

name already in use, check for any occurrences of the name using this

command:

which -all functionname

Task 7: User-defined function

Create a function calc_average that finds the average of two numbers.

Test the function afterwards as follows:

>>x = 2;

>>y = 4;

>>z = calc_average(x,y)

[End of Task]

Task 8: User-defined function

44 M-files; Scripts and user-define

functions

MATLAB Course - Part I: Introduction to MATLAB

Create a function circle that finds the area in a circle based on the input

parameter 𝑟 (radius).

Run and test the function in the Command window.

[End of Task]

45

7 Plotting

Plotting is a very important and powerful feature in MATLAB. In this

chapter we will learn the basic plotting functionality in MATLAB.

Plots functions: Here are some useful functions for creating plots:

Function Description Example

plot Generates a plot. plot(y) plots the columns of y

against the indexes of the columns.

>X = [0:0.01:1];

>Y = X.*X;

>plot(X, Y)

figure Create a new figure window >>figure

>>figure(1)

subplot Create subplots in a Figure. subplot(m,n,p) or
subplot(mnp), breaks the Figure window into an

m-by-n matrix of small axes, selects the p-th axes
for the current plot. The axes are counted along

the top row of the Figure window, then the second
row, etc.

>>subplot(2,2,1)

grid Creates grid lines in a plot.
“grid on” adds major grid lines to the current plot.

“grid off” removes major and minor grid lines from
the current plot.

>>grid

>>grid on

>>grid off

axis Control axis scaling and appearance. “axis([xmin

xmax ymin ymax])” sets the limits for the x- and
y-axis of the current axes.

>>axis([xmin xmax ymin ymax])

>>axis off

>>axis on

title Add title to current plot

title('string')

>>title('this is a title')

xlabel Add xlabel to current plot
xlabel('string')

>> xlabel('time')

ylabel Add ylabel to current plot

ylabel('string')

>> ylabel('temperature')

legend Creates a legend in the corner (or at a specified
position) of the plot

>> legend('temperature')

hold Freezes the current plot, so that additional plots

can be overlaid

>>hold on

>>hold off

Type “help graphics” in the Command Window for more information, or

type “help <functionname>” for help about a specific function.

Before you start, you should use the Help system in MATLAB to read more

about these functions. Type “help <functionname>” in the Command

window.

Example:

Here we see some examples of how to use the different plot functions:

46 Plotting

MATLAB Course - Part I: Introduction to MATLAB

[End of Example]

 Before you start using these functions, you should watch the video

“Using Basic Plotting Functions”.

The video is available from:

https://www.halvorsen.blog/documents/teaching/courses/matlab/matlab1.php

Task 9: Plotting

In the Command window (or use the Script Editor) in MATLAB window

input the time from 𝑡 = 0 seconds to 𝑡 = 10 seconds in increments of 0.1

seconds as follows:

>>t = [0:0.1:10];

Then, compute the output y as follows:

>>y = cos(t);

Use the Plot command:

>>plot(t,y)

[End of Task]

https://www.halvorsen.blog/documents/teaching/courses/matlab/matlab1.php

47 Plotting

MATLAB Course - Part I: Introduction to MATLAB

7.1 Plotting Multiple Data Sets in

One Graph

In MATLAB it is easy to plot multiple data set in one graph.

Example:

x = 0:pi/100:2*pi;

y = sin(x);

y2 = sin(x-.25);

y3 = sin(x-.5);

plot(x,y, x,y2, x,y3)

This gives the following plot:

48 Plotting

MATLAB Course - Part I: Introduction to MATLAB

Another approach is to use the hold command:

x=0:0.01:2*pi;

plot(x, sin(x))

hold on

plot(x, cos(x))

hold off

This gives the following plot:

49 Plotting

MATLAB Course - Part I: Introduction to MATLAB

[End of Example]

You can also do the plotting in different plots using the figure()

command.

Example:

x=0:0.01:2*pi;

figure(1)

plot(x, sin(x))

figure(2)

plot(x, cos(x))

The results will be like this:

50 Plotting

MATLAB Course - Part I: Introduction to MATLAB

[End of Example]

Task 10: Plot of dynamic system

Given the following differential equation:

�̇� = 𝑎𝑥

where 𝑎 = −
1

𝑇
 ,where 𝑇 is the time constant

The solution for the differential equation is:

𝑥(𝑡) = 𝑒𝑎𝑡𝑥0

Set 𝑇 = 5 and the initial condition 𝑥(0) = 1

→ Create a Script in MATLAB (.m file) where you plot the solution 𝑥(𝑡) in

the time interval 0 ≤ 𝑡 ≤ 25

→ Add Grid, and proper Title and Axis Labels to the plot.

[End of Task]

51 Plotting

MATLAB Course - Part I: Introduction to MATLAB

7.2 Displaying Multiple Plots in

one Figure – Sub-Plots

The subplot command enables you to display multiple plots in the same

window or print them on the same piece of paper. Typing “subplot(m,n,p)”

partitions the figure window into an m-by-n matrix of small subplots and

selects the pth subplot for the current plot. The plots are numbered along

the first row of the figure window, then the second row, and so on.

The syntax is as follows:

subplot(m,n,p)

Example:

t = 0:pi/10:2*pi;

[X,Y,Z] = cylinder(4*cos(t));

subplot(2,2,1); mesh(X)

subplot(2,2,2); mesh(Y)

subplot(2,2,3); mesh(Z)

subplot(2,2,4); mesh(X,Y,Z)

This gives:

52 Plotting

MATLAB Course - Part I: Introduction to MATLAB

[End of Example]

Task 11: Sub-plots

Plot Sin(x) and Cos(x) in 2 different subplots.

Add Titles and Labels.

[End of Task]

7.3 Custimizing

There is lots of customizing you can do with plots, e.g., you can add a

title, x- and y-axis labels, add a legend and customize line colors and line-

styles.

The functions for doing this is; title, xlabel, ylabel, legend, etc.

Example:

x=0:0.1:2*pi;

53 Plotting

MATLAB Course - Part I: Introduction to MATLAB

plot(x, sin(x))

%Customize the Plot:

title('This is a Title')

xlabel('This is a X label')

ylabel('This is a y label')

legend('sin(x)')

grid on

This gives the following plot:

[End of Example]

For line colors and line-styles we have the following properties we can use

for the plot function:

Line Styles:

54 Plotting

MATLAB Course - Part I: Introduction to MATLAB

Marker specifiers:

Colors:

55 Plotting

MATLAB Course - Part I: Introduction to MATLAB

Example:

>> x=0:0.1:2*pi;

>> plot(x, sin(x), 'r:o')

This gives the following plot:

[End of Example]

56 Plotting

MATLAB Course - Part I: Introduction to MATLAB

7.4 Other Plots

MATLAB offers lots of different plots.

Task 12: Other Plots

Check out the help for the following 2D functions in MATLAB: loglog,

semilogx, semilogy, plotyy, polar, fplot, fill, area, bar, barh, hist, pie,

errorbar, scatter.

→ Try some of them, e.g., bar, hist and pie.

[End of Task]

57

8 Flow Control and

Loops

8.1 Introduction

You may use different loops in MATLAB

• For loop

• While loop

If you want to control the flow in your program, you may want to use one

of the following:

• If-else statement

• Switch and case statement

It is assumed you know about For Loops, While Loops, If-Else and Switch

statements from other programming languages, so we will briefly show

the syntax used in MATLAB and go through some simple examples.

8.2 If-else Statement

The “if” statement evaluates a logical expression and executes a group of

statements when the expression is true. The optional “elseif” and else

keywords provide for the execution of alternate groups of statements. An

“end” keyword, which matches the “if”, terminates the last group of

statements. The groups of statements are delineated by the four

keywords—no braces or brackets are involved.

The general syntax is as follows:

if expression1

 statements1

elseif expression2

 statements2

else

 statements3

end

58 Flow Control and Loops

MATLAB Course - Part I: Introduction to MATLAB

Example:

Here are some simple code snippets using the if sentence:

n=5

if n > 2

 M = eye(n)

elseif n < 2

 M = zeros(n)

else

 M = ones(n)

end

or:

n=5

if n == 5

 M = eye(n)

else

 M = ones(n)

end

Note! You have to use “if n == 5” – not ”if n = 5”

[End of Example]

Example:

if A == B, ...

Note! If A and B are scalars this works – but If A and B are matrices this

might not work as expected!

→ Try it!

Use instead:

if isequal(A, B), ...

→ Try it!

[End of Example]

Operators:

You may use the following operators in MATLAB:

Mathematical Operator Description MATLAB Operator

< Less Than <

≤ Less Than or Equal To <=

59 Flow Control and Loops

MATLAB Course - Part I: Introduction to MATLAB

> Greater Than >

≥ Greater Than or Equal To >=

= Equal To ==

≠ Not Equal To ~=

Logical Operators:

You may use the following logical operators in MATLAB:

Logical Operator MATLAB Operator

AND &

OR |

Task 13: If-else Statements

Given the second order algebraic equation:

𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0

The solution (roots) is as follows:

𝑥 =

{

 −𝑏 ± √𝑏

2 − 4𝑎𝑐

2𝑎
, 𝑎 ≠ 0

−
𝑐

𝑏
, 𝑎 = 0, 𝑏 ≠ 0

∅ , 𝑎 = 0, 𝑏 = 0, 𝑐 ≠ 0
ℂ, 𝑎 = 0, 𝑏 = 0, 𝑐 = 0

where ∅ - there is no solution, ℂ - any complex number is a solution

→ Create a function that finds the solution for x based on different input

values for a, b and c, e.g.,

function x = solveeq(a,b,c)

…

→ Use if-else statements to solve the problems

→ Test the function from the Command window to make sure it works as

expected, e.g.,

>> a=0, b=2,c=1

>> solveeq(a,b,c)

Compare the results using the built-in function roots.

60 Flow Control and Loops

MATLAB Course - Part I: Introduction to MATLAB

Tip! For ∅, you can just type disp(‘there is no solution’) and for ℂ you can

type disp(‘any complex number is a solution’) – or something like that.

[End of Task]

8.3 Switch and Case Statement

The switch statement executes groups of statements based on the value

of a variable or expression. The keywords case and otherwise delineate

the groups. Only the first matching case is executed. There must always

be an end to match the switch.

The general syntax is as follows:

switch variable

 case case_value1

 statements1

 case case_value2

 statements2

 …

 otherwise

 statements

end

Example:

n=2

switch(n)

 case 1

 M = eye(n)

 case 2

 M = zeros(n)

 case 3

 M = ones(n)

end

[End of Example]

Task 14: Switch-Case Statements

Create a function that finds either the Area or the circumference of a circle

using a Switch-Case statement

You can, e.g., call the function like this:

61 Flow Control and Loops

MATLAB Course - Part I: Introduction to MATLAB

>> r=2;

>> calccircl(r,1) % 1 means area

>> calccircl(r,2) % 2 means circumference

[End of Task]

8.4 For loop

The For loop repeats a group of statements a fixed, predetermined

number of times. A matching end delineates the statements.

The general syntax is as follows:

for variable = initval:endval

 statement

 ...

 statement

end

Example:

m=5

for n = 1:m

 r(n) = rank(magic(n));

end

r

[End of Example]

Task 15: Fibonacci Numbers

In mathematics, Fibonacci numbers are the numbers in the following

sequence:

0, 1, 1, 2 ,3, 5, 8, 13, 21, 34, 55, 89, 144, …

By definition, the first two Fibonacci numbers are 0 and 1, and each

subsequent number is the sum of the previous two. Some sources omit

the initial 0, instead beginning the sequence with two 1s.

In mathematical terms, the sequence Fn of Fibonacci numbers is defined

by the recurrence relation:

62 Flow Control and Loops

MATLAB Course - Part I: Introduction to MATLAB

𝑓𝑛 = 𝑓𝑛−1 + 𝑓𝑛−2

with seed values:

𝑓0 = 0, 𝑓1 = 1

→ Write a function in MATLAB that calculates the N first Fibonacci

numbers, e.g.,

>> N=10;

>> fibonacci(N)

ans =

 0

 1

 1

 2

 3

 5

 8

 13

 21

 34

→ Use a For loop to solve the problem.

Fibonacci numbers are used in the analysis of financial markets, in

strategies such as Fibonacci retracement, and are used in computer

algorithms such as the Fibonacci search technique and the Fibonacci heap

data structure. They also appear in biological settings, such as branching

in trees, arrangement of leaves on a stem, the fruitlets of a pineapple, the

flowering of artichoke, an uncurling fern and the arrangement of a pine

cone.

[End of Task]

8.5 While loop

The while loop repeats a group of statements an indefinite number of

times under control of a logical condition. A matching end delineates the

statements.

The general syntax is as follows:

while expression

63 Flow Control and Loops

MATLAB Course - Part I: Introduction to MATLAB

 statements

end

Example:

m=5;

while m > 1

 m = m - 1;

 zeros(m)

end

[End of Example]

Task 16: While Loop

Create a Script or Function that creates Fibonacci Numbers up to a given

number, e.g.,

>> maxnumber=2000;

>> fibonacci(maxnumber)

Use a While Loop to solve the problem.

[End of Task]

8.6 Additional Tasks

Here are some additional tasks about Loops and Flow control.

Task 17: For Loops

Extend your calc_average function from a previous task so it can

calculate the average of a vector with random elements. Use a For loop to

iterate through the values in the vector and find sum in each iteration:

mysum = mysum + x(i);

Test the function in the Command window

[End of Task]

64 Flow Control and Loops

MATLAB Course - Part I: Introduction to MATLAB

Task 18: If-else Statement

Create a function where you use the “if-else” statement to find elements

larger than a specific value in the task above. If this is the case, discard

these values from the calculated average.

Example discarding numbers larger than 10 gives:

x =

 4 6 12

>> calc_average(x)

ans =

 5

[End of Task]

65

9 Mathematics

MATLAB is a powerful tool for mathematical calculations.

Type “help elfun” (elementary functions) in the Command window for

more information about basic mathematical functions.

9.1 Basic Math Functions

Some Basic Math functions in MATLAB: exp, sqrt, log, etc.→ Look up

these functions in the Help system in MATLAB.

Task 19: Basic Math function

Create a function that calculates the following mathematical expression:

𝑧 = 3𝑥2 + √𝑥2 + 𝑦2 + 𝑒ln (𝑥)

Test with different values for 𝑥 and 𝑦.

[End of Task]

9.2 Statistics

Some Statistics functions in MATLAB: mean, max, min, std, etc.

→ Look up these functions in the Help system in MATLAB.

Task 20: Statistics

Create a vector with random numbers between 0 and 100. Find the

following statistics: mean, median, standard deviation, minimum,

maximum and the variance.

[End of Task]

66 Mathematics

MATLAB Course - Part I: Introduction to MATLAB

9.3 Trigonometric Functions

MATLAB offers lots of Trigonometric functions, e.g., sin, cos, tan, etc. →

Look up these functions in the Help system in MATLAB.

Note! Most of the trigonometric functions require that the angle is

expressed in radians.

Example:

>> sin(pi/4)

ans =

 0.7071

[End of Example]

Task 21: Conversion

Since most of the trigonometric functions require that the angle is

expressed in radians, we will create our own functions in order to convert

between radians and degrees.

It is quite easy to convert from radians to degrees or from degrees to

radians. We have that:

2𝜋 [𝑟𝑎𝑑𝑖𝑎𝑛𝑠] = 360 [𝑑𝑒𝑔𝑟𝑒𝑒𝑠]

This gives:

 𝑑 [𝑑𝑒𝑔𝑟𝑒𝑒𝑠] = 𝑟[𝑟𝑎𝑑𝑖𝑎𝑛𝑠] ∙ (
180

𝜋
)

𝑟[𝑟𝑎𝑑𝑖𝑎𝑛𝑠] = 𝑑[𝑑𝑒𝑔𝑟𝑒𝑒𝑠] ∙ (
𝜋

180
)

→ Create two functions that convert from radians to degrees (r2d(x))

and from degrees to radians (d2r(x)) respectively.

Test the functions to make sure that they work as expected.

[End of Task]

Task 22: Trigonometric functions on right triangle

Given right triangle:

67 Mathematics

MATLAB Course - Part I: Introduction to MATLAB

→ Create a function that finds the angle 𝐴 (in degrees) based on input

arguments (𝑎, 𝑐), (𝑏, 𝑐) and (𝑎, 𝑏) respectively.

Use, e.g., a third input “type” to define the different types above.

→ Use you previous function r2d() to make sure the output of your

function is in degrees and not in radians.

Test the functions to make sure it works properly.

Tip! We have that:

sin 𝐴 =
𝑎

𝑐
, 𝐴 = 𝑎𝑟𝑐𝑠𝑖𝑛 (

𝑎

𝑐
)

cos𝐴 =
𝑏

𝑐
, 𝐴 = 𝑎𝑟𝑐𝑐𝑜𝑠 (

𝑏

𝑐
)

tan 𝐴 =
𝑎

𝑏
, 𝐴 = 𝑎𝑟𝑐𝑡𝑎𝑛 (

𝑎

𝑏
)

We may also need the Pythagoras' theorem:

𝑐2 = 𝑎2 + 𝑏2

Testing the function can be done like this in the Command Window:

>> a=5, b=8, c=sqrt(a^2+b^2);

>> A = right_triangle(a,c,'sin')

A =

 32.0054

>> A = right_triangle(b,c,'cos')

A =

 32.0054

>> A = right_triangle(a,b,'tan')

A =

68 Mathematics

MATLAB Course - Part I: Introduction to MATLAB

 32.0054

We also see that the answer in this case is the same, which is expected.

[End of Task]

Task 23: Law of cosines

Given:

Create a function where you find c using the law of cosines.

𝑐2 = 𝑎2 + 𝑏2 − 2𝑎𝑏 𝑐𝑜𝑠𝐶

Test the functions to make sure it works properly.

[End of Task]

Task 24: Plotting

Plot 𝑠𝑖𝑛(𝜃) and 𝑐𝑜𝑠(𝜃) for 0 ≤ 𝜃 ≤ 2𝜋 in the same plot.

Make sure to add labels and a legend and use different line styles and

colors for the plots.

[End of Task]

9.4 Complex Numbers

Complex numbers are important in modelling and control theory.

A complex number is defined like this:

𝑧 = 𝑎 + 𝑖𝑏

69 Mathematics

MATLAB Course - Part I: Introduction to MATLAB

or

𝑧 = 𝑎 + 𝑗𝑏

The imaginary unit 𝑖 or 𝑗 is defined as:

𝑖 = √−1

Where 𝑎 is called the real part of 𝑧 and 𝑏 is called the imaginary part of

𝑧, i.e.:

𝑅𝑒(𝑧) = 𝑎, 𝐼𝑚(𝑧) = 𝑏

You may also imaginary numbers on exponential/polar form:

𝑧 = 𝑟𝑒𝑗𝜃

70 Mathematics

MATLAB Course - Part I: Introduction to MATLAB

where:

𝑟 = |𝑧| = √ 𝑎2 + 𝑏2

𝜃 = 𝑎𝑡𝑎𝑛
𝑏

𝑎

Note that 𝑎 = 𝑟 cos𝜃 and 𝑏 = 𝑟 sin 𝜃

Example:

Given the following complex number:

𝑧 = 2 + 𝑖3

In MATLAB we may type:

>> z=2+3i

or:

>> z=2+3j

[End of Example]

71 Mathematics

MATLAB Course - Part I: Introduction to MATLAB

The complex conjugate of z is defined as:

𝑧∗ = 𝑎 − 𝑖𝑏

To add or subtract two complex numbers, we simply add (or subtract)

their real parts and their imaginary parts.

In Division and multiplication, we use the polar form.

Given the complex numbers:

𝑧1 = 𝑟1𝑒
𝑗𝜃1 and 𝑧2 = 𝑟2𝑒

𝑗𝜃2

Multiplication:

𝑧3 = 𝑧1𝑧2 = 𝑟1𝑟2𝑒
𝑗(𝜃1+𝜃2)

Division:

𝑧3 =
𝑧1

𝑧2
=
𝑟1𝑒

𝑗𝜃1

𝑟2𝑒
𝑗𝜃2

=
𝑟1

𝑟2
𝑒𝑗(𝜃1−𝜃2)

MATLAB functions:

Some Basic functions for complex numbers in MATLAB: abs, angle,

imag, real, conj, complex, etc.

Function Description Example

i,j Imaginary unit. As the basic imaginary unit

SQRT(-1), i and j are used to enter complex
numbers. For example, the expressions 3+2i,
3+2*i, 3+2j, 3+2*j and 3+2*sqrt(-1) all have

the same value.

>>z=2+4i

>>z=2+4j

abs abs(x) is the absolute value of the elements of x.
When x is complex, abs(x) is the complex

modulus (magnitude) of the elements of X.

>>z=2+4i

>>abs(z)

angle Phase angle. angle(z) returns the phase angles,
in radians

>>z=2+4i

>>angle(z)

imag Complex imaginary part. imag(z) is the imaginary

part of z.

>>z=2+4i

>>b=imag(z)

real Complex real part. real(z) is the real part of z. >>z=2+4i

>>a=real(z)

conj Complex conjugate. conj(x) is the complex
conjugate of x.

>>z=2+4i

>>z_con=conj(z)

complex Construct complex result from real and imaginary

parts. c = complex(a,b) returns the complex
result A + Bi

>>a=2;

>>b=3;

>>z=complex(a,b)

72 Mathematics

MATLAB Course - Part I: Introduction to MATLAB

Look up these functions in the Help system in MATLAB.

Task 25: Complex numbers

Given two complex numbers

𝑐 = 4 + 𝑗3, 𝑑 = 1 − 𝑗

Find the real and imaginary part of c and d in MATLAB.

→ Use MATLAB to find 𝑐 + 𝑑, 𝑐 − 𝑑, 𝑐𝑑 𝑎𝑛𝑑 𝑐/𝑑.

Use the direct method supported by MATLAB and the specific complex

functions abs, angle, imag, real, conj, complex, etc. together with the

formulas for complex numbers that are listed above in the text (as you do

it when you should calculate it using pen & paper).

→ Find also 𝑟 and 𝜃. Find also the complex conjugate.

[End of Task]

Task 26: Complex numbers

Find the roots of the equation:

𝑥2 + 4𝑥 + 13

We can e.g., use the solveeq function we created in a previous task.

Compare the results using the built-in function roots.

Discuss the results.

Add the sum of the roots.

[End of Task]

9.5 Polynomials

A polynomial is expressed as:

𝑝(𝑥) = 𝑝1𝑥
𝑛 + 𝑝2𝑥

𝑛−1 +⋯+ 𝑝𝑛𝑥 + 𝑝𝑛+1

where 𝑝1 , 𝑝2 , 𝑝3 , … are the coefficients of the polynomial.

73 Mathematics

MATLAB Course - Part I: Introduction to MATLAB

MATLAB represents polynomials as row arrays containing coefficients

ordered by descending powers.

Example:

Given the polynomial:

𝑝(𝑥) = −5.45𝑥4 + 3.2𝑥2 + 8𝑥 + 5.6

In MATLAB we write:

>> p=[-5.45 0 3.2 8 5.8]

p =

 -5.4500 0 3.2000 8.0000 5.8000

[End of Example]

MATLAB offers lots of functions on polynomials, such as conv, roots,

deconv, polyval, polyint, polyder, polyfit, etc. → Look up these

functions in the Help system in MATLAB.

Task 27: Polynomials

Define the following polynomial in MATLAB:

𝑝(𝑥) = −2.1𝑥4 + 2𝑥3 + 5𝑥 + 11

→ Find the roots of the polynomial (𝑝(𝑥) = 0) (and check if the answers are

correct)

→ Find 𝑝(𝑥 = 2)

Use the polynomial functions listed above.

[End of Task]

Task 28: Polynomials

Given the following polynomials:

𝑝1(𝑥) = 1 + 𝑥 − 𝑥2

𝑝2(𝑥) = 2 + 𝑥3

→ Find the polynomial 𝑝(𝑥) = 𝑝1(𝑥) ∙ 𝑝2(𝑥) using MATLAB and find the roots

→ Find the roots of the polynomial (𝑝(𝑥) = 0)

74 Mathematics

MATLAB Course - Part I: Introduction to MATLAB

→ Find 𝑝(𝑥 = 2)

→ Find the differentiation/derivative of 𝑝2(𝑥), i.e., 𝑝2
′

Use the polynomial functions listed above.

[End of Task]

Task 29: Polynomial Fitting

Find the 6. order Polynomial that best fits the following function:

𝑦 = sin (𝑥)

Use the polynomial functions listed above.

→ Plot both the function and the 6. order Polynomial to compare the

results.

[End of Task]

75

10 Additional Tasks

If you have time left or need more practice, solve the tasks below. Its

highly recommended to solve these tasks as well, since some of these will

most likely be part of the final test.

Task 30: User-defined function

Create a function that uses Pythagoras to calculate the hypotenuse of a

right-angled triangle, e.g.:

function h = pyt(a,b)

% ..

…

h = …

Pythagoras theorem is as follows: 𝑐2 = 𝑎2 + 𝑏2

Note! The function should handle that 𝑎 and 𝑏 could be vectors.

[End of Task]

Task 31: MATLAB Script

Given the famous equation from Albert Einstein:

𝐸 = 𝑚𝑐2

The sun radiates 385 𝑥 1024𝐽/𝑠 of energy.

→ Calculate how much of the mass on the sun is used to create this

energy per day.

76 Additional Tasks

MATLAB Course - Part I: Introduction to MATLAB

→ How many years will it take to convert all the mass of the sun

completely? Do we need to worry if the sun will be used up in our

generation or the next?

The mass of the sun is 2 𝑥 1030𝑘𝑔

[End of Task]

Task 32: Cylinder surface area

Create a function that finds the surface area of a cylinder based on the

height (ℎ) and the radius (𝑟) of the cylinder.

[End of Task]

Task 33: Create advanced expressions in MATLAB

Create the following expression in MATLAB:

𝑓(𝑥) =
ln(𝑎𝑥2 + 𝑏𝑥 + 𝑐) − sin (𝑎𝑥2 + 𝑏𝑥 + 𝑐)

4𝜋𝑥2 + cos (𝑥 − 2)(𝑎𝑥2 + 𝑏𝑥 + 𝑐)

Given 𝑎 = 1, 𝑏 = 3, 𝑐 = 5

→ Find 𝑓(9)

(The answer should be 𝑓(9) = 0.0044)

Tip! You should split the expressions into different parts, such as:

77 Additional Tasks

MATLAB Course - Part I: Introduction to MATLAB

poly = 𝑎𝑥2 + 𝑏𝑥 + 𝑐

num =…

den =….

f =…

This makes the expression simpler to read and understand, and you

minimize the risk of making an error while typing the expression in

MATLAB.

[End of Task]

Task 34: Solving Equations

Find the solution(s) for the given equations:

𝑥1 + 2𝑥2 = 5

3𝑥1 + 4𝑥2 = 6

7𝑥1 + 8𝑥2 = 9

[End of Task]

Task 35: Pre-allocating of variables and vectorization

Here we will use pre-allocating of variables and vectorization and compare

with using a For Loop.

We will use the functions tic and toc to find the execution time.

We will create a simple program that calculates 𝑦 = 𝑐𝑜𝑠(𝑡) for t=1 to

100 000.

Create the following Script:

% Test 1: Using a For Loop

clear

tic

tmax=100000;

for t=1:tmax

 y(t,1)=cos(t);

78 Additional Tasks

MATLAB Course - Part I: Introduction to MATLAB

end

toc

→ What was the execution time?

We will improve the Script by preallocating space for the variable y.

Create the following Script:

% Test 2: For Lopp with preallocating

clear

tic

tmax=100000;

y=zeros(tmax,1); % preallocating

for t=1:tmax

 y(t,1)=cos(t);

end

toc

→ What was the execution time?

We will improve the Script further by removing the For Loop by using

vectorization instead:

% Test 3: Vectorization

clear

tic

tmax = 100000;

t = 1:tmax; %vectorization

y = cos(t);

toc

→ What was the execution time?

Discuss the result.

79 Additional Tasks

MATLAB Course - Part I: Introduction to MATLAB

[End of Task]

Task 36: Nested For Loops

Given the matrices 𝐴 ∈ 𝑅𝑛𝑥𝑚 and 𝐵 ∈ 𝑅𝑚𝑥𝑝, then

𝐶 = 𝐴𝐵 ∈ 𝑅𝑛𝑥𝑝

where

𝑐𝑗𝑘 =∑𝑎𝑗𝑙𝑏𝑙𝑘

𝑛

𝑙=1

In MATLAB it is easy to multiply two matrices:

>> A = [0 1;-2 -3]

A =

 0 1

 -2 -3

>> B = [1 0;3 -2]

B =

 1 0

 3 -2

>> A*B

ans =

 3 -2

 -11 6

But her you will create your own function that multiply two matrices:

function C = matrixmult(A,B)

…

Tip! You need to use 3 nested For Loops.

[End of Task]

Task 37: Prime Numbers

The first 25 prime numbers (all the prime numbers less than 100) are:

80 Additional Tasks

MATLAB Course - Part I: Introduction to MATLAB

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71,

73, 79, 83, 89, 97

By definition a prime number has both 1 and itself as a divisor. If it has

any other divisor, it cannot be prime.

A natural number (1, 2, 3, 4, 5, 6, etc.) is called a prime number (or a

prime) if it is greater than 1 and cannot be written as a product of two

natural numbers that are both smaller than it.

Create a MATLAB Script where you find all prime numbers between 1 and

200.

Tip! I guess this can be done in many ways, but one way is to use 2

nested For Loops.

[End of Task]

Task 38: Prime Number Function

The first 25 prime numbers (all the prime numbers less than 100) are:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71,

73, 79, 83, 89, 97

By definition, a prime number has both 1 and itself as a divisor. If it has

any other divisor, it cannot be prime.

A natural number (1, 2, 3, 4, 5, 6, etc.) is called a prime number (or a

prime) if it is greater than 1 and cannot be written as a product of two

natural numbers that are both smaller than it.

Create a MATLAB function where you check if a given number is a prime

number or not.

You can check the function in the Command Window like this:

>> number = 4

>> checkifprime(number)

 [End of Task]

81 Additional Tasks

MATLAB Course - Part I: Introduction to MATLAB

82

Appendix A: MATLAB

Functions

This Appendix gives an overview of the most used functions in this course.

Built-in Constants

MATLAB have several built-in constants. Some of them are explained

here:

Name Description

i, j Used for complex numbers, e.g., z=2+4i
pi 𝜋
inf ∞, Infinity
NaN Not A Number. If you, e.g., divide by zero, you get NaN

Basic Functions

Here are some descriptions for the most used basic MATLAB functions.

Function Description Example

help MATLAB displays the help information available >>help

help

<function>

Display help about a specific function >>help plot

who, whos who lists in alphabetical order all variables in
the currently active workspace.

>>who

>>whos

clear Clear variables and functions from memory. >>clear

>>clear x

size Size of arrays, matrices >>x=[1 2 ; 3 4];

>>size(A)

length Length of a vector >>x=[1:1:10];

>>length(x)

format Set output format

disp Display text or array >>A=[1 2;3 4];

>>disp(A)

plot This function is used to create a plot >>x=[1:1:10];

>>plot(x)

>>y=sin(x);

>>plot(x,y)

clc Clear the Command window >>cls

rand Creates a random number, vector or matrix >>rand

>>rand(2,1)

max Find the largest number in a vector >>x=[1:1:10]

>>max(x)

83 Appendix A: MATLAB Functions

MATLAB Course - Part I: Introduction to MATLAB

min Find the smallest number in a vector >>x=[1:1:10]

>>min(x)

mean Average or mean value >>x=[1:1:10]

>>mean(x)

std Standard deviation >>x=[1:1:10]

>>std(x)

Linear Algebra

Here are some useful functions for Linear Algebra in MATLAB:

Function Description Example

rank Find the rank of a matrix. Provides an estimate of
the number of linearly independent rows or

columns of a matrix A.

>>A=[1 2; 3 4]

>>rank(A)

det Find the determinant of a square matrix >>A=[1 2; 3 4]

>>det(A)

inv Find the inverse of a square matrix >>A=[1 2; 3 4]

>>inv(A)

eig Find the eigenvalues of a square matrix >>A=[1 2; 3 4]

>>eig(A)

ones Creates an array or matrix with only ones >>ones(2)

>>ones(2,1)

eye Creates an identity matrix >>eye(2)

diag Find the diagonal elements in a matrix >>A=[1 2; 3 4]

>>diag(A)

Type “help matfun” (Matrix functions - numerical linear algebra) in the

Command Window for more information, or type “help elmat”

(Elementary matrices and matrix manipulation).

You may also type “help <functionname>” for help about a specific

function.

Plotting

Plots functions: Here are some useful functions for creating plots:

Function Description Example

plot Generates a plot. plot(y) plots the columns of y
against the indexes of the columns.

>X = [0:0.01:1];

>Y = X.*X;

>plot(X, Y)

figure Create a new figure window >>figure

>>figure(1)

subplot Create subplots in a Figure. subplot(m,n,p) or
subplot(mnp), breaks the Figure window into an
m-by-n matrix of small axes, selects the p-th axes

for the current plot. The axes are counted along
the top row of the Figure window, then the second

row, etc.

>>subplot(2,2,1)

grid Creates grid lines in a plot.
“grid on” adds major grid lines to the current plot.
“grid off” removes major and minor grid lines from

the current plot.

>>grid

>>grid on

>>grid off

84 Appendix A: MATLAB Functions

MATLAB Course - Part I: Introduction to MATLAB

axis Control axis scaling and appearance. “axis([xmin

xmax ymin ymax])” sets the limits for the x- and
y-axis of the current axes.

>>axis([xmin xmax ymin ymax])

>>axis off

>>axis on

title Add title to current plot

title('string')

>>title('this is a title')

xlabel Add xlabel to current plot
xlabel('string')

>> xlabel('time')

ylabel Add ylabel to current plot

ylabel('string')

>> ylabel('temperature')

legend Creates a legend in the corner (or at a specified
position) of the plot

>> legend('temperature')

hold Freezes the current plot, so that additional plots
can be overlaid

>>hold on

>>hold off

Type “help graphics” in the Command Window for more information, or

type “help <functionname>” for help about a specific function.

Operators:

You may use the following operators in MATLAB:

Mathematical Operator Description MATLAB Operator

< Less Than <

≤ Less Than or Equal To <=

> Greater Than >

≥ Greater Than or Equal To >=

= Equal To ==

≠ Not Equal To ~=

Logical Operators

You may use the following logical operators in MATLAB:

Logical Operator MATLAB Operator

AND &

OR |

Complex Numbers

Functions used to create or manipulate complex numbers.

Function Description Example

i,j Imaginary unit. As the basic imaginary unit
SQRT(-1), i and j are used to enter complex

numbers. For example, the expressions 3+2i,
3+2*i, 3+2j, 3+2*j and 3+2*sqrt(-1) all have
the same value.

>>z=2+4i

>>z=2+4j

85 Appendix A: MATLAB Functions

MATLAB Course - Part I: Introduction to MATLAB

abs abs(x) is the absolute value of the elements of x.

When x is complex, abs(x) is the complex
modulus (magnitude) of the elements of X.

>>z=2+4i

>>abs(z)

angle Phase angle. angle(z) returns the phase angles,

in radians

>>z=2+4i

>>angle(z)

imag Complex imaginary part. imag(z) is the imaginary
part of z.

>>z=2+4i

>>b=imag(z)

real Complex real part. real(z) is the real part of z. >>z=2+4i

>>a=real(z)

conj Complex conjugate. conj(x) is the complex

conjugate of x.

>>z=2+4i

>>z_con=conj(z)

complex Construct complex result from real and imaginary
parts. c = complex(a,b) returns the complex

result A + Bi

>>a=2;

>>b=3;

>>z=complex(a,b)

Hans-Petter Halvorsen

E-mail: hans.p.halvorsen@usn.no

Blog: http://www.halvorsen.blog

University of South-Eastern Norway

www.usn.no

mailto:hans.p.halvorsen@usn.no
http://www.halvorsen.blog/
http://www.usn.no/

Introduction to MATLAB

	Preface
	Table of Contents
	1 Introduction
	2 The MATLAB Environment
	2.1 Command Window
	2.2 Command History
	2.3 Workspace
	2.4 Current Folder
	2.5 Editor

	3 Using the Help System in MATLAB
	4 MATLAB Basics
	4.1 Basic Operations
	Task 1: Basic Operations
	Task 2: Statistics functions

	4.2 Arrays; Vectors and Matrices
	4.2.1 Colon Notation
	Task 3: Vectors and Matrices

	4.3 Tips and Tricks
	4.3.1 Array Operations

	5 Linear Algebra; Vectors and Matrices
	5.1 Vectors
	5.2 Matrices
	5.2.1 Transpose
	5.2.2 Diagonal
	5.2.3 Triangular
	5.2.4 Matrix Multiplication
	5.2.5 Matrix Addition
	5.2.6 Determinant
	5.2.7 Inverse Matrices

	5.3 Eigenvalues
	Task 4: Matrix manipulation

	5.4 Solving Linear Equations
	Task 5: Solving Linear Equations

	6 M-files; Scripts and user-define functions
	6.1 Scripts vs. function Files
	6.2 Scripts
	Task 6: Script

	6.3 Functions
	Task 7: User-defined function
	Task 8: User-defined function

	7 Plotting
	Task 9: Plotting
	7.1 Plotting Multiple Data Sets in One Graph
	Task 10: Plot of dynamic system

	7.2 Displaying Multiple Plots in one Figure – Sub-Plots
	Task 11: Sub-plots

	7.3 Custimizing
	7.4 Other Plots
	Task 12: Other Plots

	8 Flow Control and Loops
	8.1 Introduction
	8.2 If-else Statement
	Task 13: If-else Statements

	8.3 Switch and Case Statement
	Task 14: Switch-Case Statements

	8.4 For loop
	Task 15: Fibonacci Numbers

	8.5 While loop
	Task 16: While Loop

	8.6 Additional Tasks
	Task 17: For Loops
	Task 18: If-else Statement

	9 Mathematics
	9.1 Basic Math Functions
	Task 19: Basic Math function

	9.2 Statistics
	Task 20: Statistics

	9.3 Trigonometric Functions
	Task 21: Conversion
	Task 22: Trigonometric functions on right triangle
	Task 23: Law of cosines
	Task 24: Plotting

	9.4 Complex Numbers
	Task 25: Complex numbers
	Task 26: Complex numbers

	9.5 Polynomials
	Task 27: Polynomials
	Task 28: Polynomials
	Task 29: Polynomial Fitting

	10 Additional Tasks
	Task 30: User-defined function
	Task 31: MATLAB Script
	Task 32: Cylinder surface area
	Task 33: Create advanced expressions in MATLAB
	Task 34: Solving Equations
	Task 35: Pre-allocating of variables and vectorization
	Task 36: Nested For Loops
	Task 37: Prime Numbers
	Task 38: Prime Number Function

	Appendix A: MATLAB Functions
	Built-in Constants
	Basic Functions
	Linear Algebra
	Plotting
	Logical Operators
	Complex Numbers

