Introduction to
MATLAB

Hans-Petter Halvorsen

https://www.halvorsen.blog

Introduction to MATLAB

University of South-Eastern Norway

MATLAB for Students A‘

MATLAB

Introduction to MATLAB

Hans-Petter Halvorsen, 2022.08.17

e e (=

Arpitce

MATLAB

The Language of Technical Computing

http://www.halvorsen.blog/

Preface

Copyright You cannot distribute or copy this document without
permission from the author. You cannot copy or link to this document
directly from other sources, web pages, etc. You should always link to the
proper web page where this document is located, typically
http://www.halvorsen.blog

In this MATLAB Course, you will learn basic MATLAB and how to use
MATLAB in Control and Simulation applications. An introduction to
Simulink and other Tools will also be given.

MATLAB is a tool for technical computing, computation and visualization in
an integrated environment. MATLAB is an abbreviation for MATrix
LABoratory, so it is well suited for matrix manipulation and problem
solving related to Linear Algebra, Modelling, Simulation and Control
applications.

This is a self-paced course based on this document and some short videos
on the way. This document contains lots of examples and self-paced tasks
that the users will go through and solve on their own. The user may go
through the tasks in this document in their own pace and the instructor
will be available for guidance throughout the course.

The MATLAB Course consists of 3 parts:

1. Introduction to MATLAB
2. Modelling, Simulation and Control
3. Simulink and Advanced Topics

In part 1 you will be familiar with the MATLAB environment and learn
basic MATLAB programming.

The course consists of lots of Tasks you should solve while reading this
course manual and watching the videos referred to in the text.

http://www.halvorsen.blog/

Make sure to bring your headphones for the videos in this
course. The course consists of several short videos that will give you an
introduction to the different topics in the course.

Prerequisites

You should be familiar with undergraduate-level mathematics and have
experience with basic computer operations.

What is MATLAB? MATLAB is a tool for technical computing, computation
and visualization in an integrated environment. MATLAB is an abbreviation
for MATrix LABoratory, so it is well suited for matrix manipulation and
problem solving related to Linear Algebra.

MATLAB is developed by The MathWorks. MATLAB is a short-term for
MATrix LABoratory. MATLAB is in use world-wide by researchers and
universities. For more information, see www.mathworks.com

For more information about MATLAB, etc., please visit
http://www.halvorsen.blog

Online MATLAB Resources:
MATLAB:

http://www.halvorsen.blog/documents/programming/matlab/

MATLAB Basics:

http://www.halvorsen.blog/documents/programming/matlab/matlab basics.php

Modelling, Simulation and Control with MATLAB:

http://www.halvorsen.blog/documents/programming/matlab/matlab mic.php

http://www.mathworks.com/
http://www.halvorsen.blog/
http://www.halvorsen.blog/documents/programming/matlab/
http://www.halvorsen.blog/documents/programming/matlab/matlab_basics.php
http://www.halvorsen.blog/documents/programming/matlab/matlab_mic.php

MATLAB Videos:

http://www.halvorsen.blog/documents/video/matlab basics videos.php

MATLAB for Students:

http://www.halvorsen.blog/documents/teaching/courses/matlab.php

On these web pages you find video solutions, complete step by step
solutions, downloadable MATLAB code, additional resources, etc.

http://www.halvorsen.blog/documents/video/matlab_basics_videos.php
http://www.halvorsen.blog/documents/teaching/courses/matlab.php

Table of Contents

P aCE e e i
Table of CoNteNtS. ... Y%
1 INtrOdUCHION Lo e 1
2 The MATLAB EnVvironmentoooiiiiiii e e 2
2.1 Command WINAOWeiieiiiiiiiiii e et rae e e e 3
2.2 Command HiStOry ..ouiiiii i et aee s 4
2.3 WOIKSPACE c ittt ittt e 4
2.4 Current Folder ... 6
20 N = 1o o 7

3 Using the Help System in MATLAB ...coiiiiii i i i eaaaeeas 9
I N Y = 1 T [P 11
2 R = Y= 1] [ol @ J o 1= r= 1 o (o] o S 11
Task 1: BasiC Operations ...c.cviieiiiiiiii i s neerae e rnennnnens 13

Task 2: Statistics functions ... 15

4.2 Arrays; Vectors and MatriCes.....coviiiiiiiiiii i 16
4.2.1 Colon NOtatioNvieiiiii i e 17
Task 3: Vectors and Matrices......c.cvviiiiiiiiiiii e 18

G T o TS=T o [B I o [0l <SPPI 19
4.3.1 Array OperationS....iiieiiiiii i i i 20

5 Linear Algebra; Vectors and Matricesccoevviviiiiiiiiiiiiic e 23
T B VT ot o 23
5.2 MAtriCOS uiiiiiiii i 26
ST R I = | 1= Lo 1] = PP 26

Vi Table of Contents

5.2.2 DIagonal .o e 26
5.2.3 THangUIAr o e 27
5.2.4 Matrix Multiplication ..o 28
5.2.5 Matrix Additionooviiiiiiii 29
5.2.6 Determinant ... e 29
5.2.7 Inverse MatriCeScviiiiiiiiiiiiiiiii i i e 30
5.3 EIigenvalues ..o e 31
Task 4: Matrix manipulationc.ccoviiiiiiii e 32
5.4 Solving Linear EQUAtiONS......coiiiiiiiiii i i 32
Task 5: Solving Linear EQUAtionsccoiiiiii i 35

6 M-files; Scripts and user-define functions.........ccoviiiiiiiii i 36
6.1 Scripts vs. function FileSceiviiiiii i 36
LT Y of 1 01 37
= 1] S Tl | o o 39

6.3 FUNCLIONS .. 40
Task 7: User-defined function..........cooiiiiiiiii e 43
Task 8: User-defined function.........c.cooiiiiiiiiii e 43

/2 o [0 | o I P 45
Task O: PlOttiNgG .vvviiiii i e 46

7.1 Plotting Multiple Data Sets in One Graphc.ccoiiiiiieiinnne. 47
Task 10: Plot of dynamic systemccoviiiiiiiiiii e 50

7.2 Displaying Multiple Plots in one Figure — Sub-Plots................... 51
Task 11: SUD-PIOtS...uiiiiiii i e 52
/28C T O U 11 1 01 4 | [1R 52
7.4 Other PIOtS. ... 56
Task 12: Other PIOtSs ...ocvviiiiii e 56

MATLAB Course - Part I: Introduction to MATLAB

vii Table of Contents

8 Flow Control @and LOOPS .ouviiiiiiiii i sie i e e s s nenanneeas 57
8.1 INtroductioncoeii 57
8.2 If-else Statement......ccoiieiiiiiii 57

Task 13: If-else Statements......ociiiiiiiiiii e 59
8.3 Switch and Case Statementoooiiiiiiiii 60
Task 14: Switch-Case Statements.........ccovviiiiiiiiiiiiii s 60
S S o] il o o o LS 61
Task 15: Fibonacci NUmMbers ..o 61
8.5 Wil 00D . e 62
Task 16: WHhile LOOP . .uiiiiiii i e e e aeee s 63
8.6 Additional Tasksc.oviiiiiii 63
LIS A2 o] g e To] o 1= P 63
Task 18: If-else Statement ..o 64

1S I =1 g 1= 1= 1 Lok 65

9.1 Basic Math FUNCLIONScuiiiii e 65
Task 19: Basic Math function..........cooiiiiii e 65
0.2 StAtiStiCS 1viiii i 65
Task 20: Statistics ...cvvviiiii 65
9.3 TrigonometriC FUNCLIONS ..uviiiiiiiiiiiiiiii i snniann e e e 66
TAsK 211 CONVEISION ..uuiiiiieiii it r et r e s e e e saeeseaaneanans 66
Task 22: Trigonometric functions on right triangle 66
Task 23: LaW Of COSINES....iiuiiiiiiiii i aaeeeens 68
Task 24: PlottiNg .oovveeiii i e 68
9.4 Complex NUMDErScviiii i e 68
Task 25: CompleX NUMDbDErS. . .c.iiiie i e i neeeas 72
Task 26: CompleX NUMDbDEIS....ccviiiii i i e eaaeeas 72

MATLAB Course - Part I: Introduction to MATLAB

viii Table of Contents

0.5 POIYNOMIAIS .t e 72
Task 27: PoOlynomials ...c.coiiiiiiiiii i e 73
Task 28: Polynomials ...c.coiiiiiiiii i e e 73
Task 29: Polynomial Fittingccovveiiiiiii e 74

10 Additional Tasks oo e 75
Task 30: User-defined function.........ccoviiiiiiiiii i 75
Task 31: MATLAB SCript .o e e nneeas 75
Task 32: Cylinder surface areacvvvivviiiiiiieiiiie i i inenneeas 76
Task 33: Create advanced expressions in MATLABccevineeen. 76
Task 34: Solving EQUAtiONSc.viiiii e 77
Task 35: Pre-allocating of variables and vectorization................. 77
Task 36: Nested FOr LOOPS . iiiiiiiiiiii i i eiaeesnnneesannneens 79
Appendix A: MATLAB FUNCHIONS...iiiiiiei i i e ennnnaeeas 82

BUilt-in Constants ... e 82

BasiC FUNCLIONS ... e 82

Linear Algebra ... e 83

o 10 o o1 ' 83

oo] {or=] M@0 1=T ¢ we] o< PP 84

CompleXxX NUM OIS ... i e e e e eanaeeas 84

MATLAB Course - Part I: Introduction to MATLAB

1 Introduction

Additional Resources, Videos, etc. are available from:

http://www.halvorsen.blog/documents/programming/matlab

Part I: Introduction to MATLAB consists of the following topics:

e The MATLAB Environment

e Using the Help System in MATLAB

e MATLAB Basics

e Linear Algebra; Vectors and Matrices

e M files; Scripts and User-defined functions

e Plotting

e Flow Control and Loops; For and While Loops, If and Case
statements

¢ Mathematics

e Additional Tasks

http://www.halvorsen.blog/documents/programming/matlab

2 The MATLAB
Environment

The MATLAB Environment consists of the following main parts:

Command Window

e Command History
e Workspace

e Current Folder

e Editor

Below we see the MATLAB environment:

MATLAB R2014a

EDITOR

msen B fx B v <o

HOME PUBLISH

{L:' (i ﬁ L5y Fin s [2 % 2] Run Section &

Q Search Documentation

: - C t % %% % To v
New Open Save 5 Compare cmment 36 2% 23 RgeTo Breakpoints Run Runand @Ad"nu Run and
- - * SiPrint ¥ Indent £ 5 { Find ~ - v Advance Time
ALE ! o | NAVIGATE | BREAPOINTS | N 1
4 o (5 @ [/ » Users » hansha » Documents » MATLAB » P
Current Folder ® 7 Editor - /Users/hansha/Documents/MATLAB/level_tank.m ® x Workspace ®
B [Name & : [bode_exm | cylindar_surfacem | level_tank.m | + | Name & Value Mirl
New Folder 1= cle, clear o [Ha [0,-0.0127:0,0] -0
] bode_ex.m A= K = 16.5; H A_tank 78.5000 78
] bode_test.m 3. A tank - 78.5; tHe [0.2102;0] 0
#] cylindar_surface.m A - ’ H [1,0] []
) frek_test.m 5o A = [0, -1/A_tank; @, 0]; o S !
#) level_tank.m - H Ix1tf
6 - B = [Kp/A_tank; ol;
£ table_size.m - c=11, ol; H ke 16.5000 16
) testl.m Bl= b= lol; _ [model ixlss
9 - I
- model = ss(a, B, ¢, 0y 200 foure]
1 File Edit View Insert Tools Desktop Window Help ~
E - steplmodel) DEd® h AAODEM- 2 08 O
1
15 - H=tf(model) -
e , epResponse
17
18- step(H) I3 d
7]
&]
a5 4
£ 1
3]
2]
f]
Command Window] . - L L L L 4
5 n 15 20 25 30 35 40
(@ New to MATLAB? Watch this Video, Tinessconds)
ux
" T —
Continuous-time state-space model.
level_tank.m (Script) v
H=
0.2102
s
Continuous-time transfer function.
Jo >
Ln 1 Col 1

FTLL
m Before you start, you should watch the
Development Environment”.

video “"Working in the

3 The MATLAB Environment

The video is available from:
https://www.halvorsen.blog/documents/teaching/courses/matlab/matlabl.php

2.1 Command Window

The Command Window is the main window in MATLAB. Use the
Command Window to enter variables and to run functions and M-files
scripts (more about m-files later).

Command Window “Oa X
(@ 1o get started, select MATLAB Help or Demos from the Help menu, x

This is & Classroom License for instructional use ounly.
Research and commercial use is prohibited.
>» &=[1 2:0 3]

bR e e
[
bR e e
[
bR e e

>

You type all your commands after the command Prompt “">>", e.qg.,
defining the following matrix:

a=[y 3

The MATLAB syntax is as follows:

>> A = [1 2;0 3]

Or

>> A [1,2;0,3]

If you, for an example, want to find the answer to
a+ b,wherea =4,b =3

Type like this:

MATLAB Course - Part I: Introduction to MATLAB

4 The MATLAB Environment

>>a = 4
>>b = 3
>>a + b

MATLAB then responds:

ans =

2.2 Command History

Statements you enter in the Command Window are logged in the
Command History. From the Command History, you can view and search
for previously run statements, as well as copy and execute selected
statements. You can also create an M-file from selected statements.

----- $-- 30.09.09 0D8:29 --%
E-%-- 09.10.09 15:34 --3%

||

2.3 Workspace

The Workspace window list all your variables used as long you have
MATLAB opened.

MATLAB Course - Part I: Introduction to MATLAB

5 The MATLAB Environment

Workspace g & X |
b P S| [- se[o]

Mame = Walue i M
AL [12:073] 0 3

e 2 3 3 3
e <55 doubles 1 1

H = 4 4 4

HH ans =55 double= 1 1
HH array 13579 1 g
Hb 3 3 3

< | >

You could also use the following command

>>who

This command list all the commands used

or

>>whos

This command lists all the command with the current values, dimensions,
etc.

The command clear, will clear all the variables in your workplace.

>>clear

Save your data:

You may also save all your variables and data to a text file (.mat file),
this is useful if you want to save your data and use it for later.

Select the variables you want to save and right-click and select “Save
As...”:

MATLAB Course - Part I: Introduction to MATLAB

6 The MATLAB Environment

Workspace + O 7 = (&0 (CGLN

BEEGS B [7]- sk
Mame = Yalue

[12:34]

1

2

Open Selection

Copy Chrl4+C
Duplicate Chrl+D
Delete Delete
Rename

Edit Yalue

MATLAB also have commands for this: save/load and diary.

2.4 Current Folder

The “Current Folder” window lists all m files, etc. available in the current
directory.

8 00 MATLAB R2014a

EDITOR

PUBLISH VIEW

New Variable Analyze Code oE ~ 3
5‘1] E @ Find Files I&I E - = LJEE' @ @ Preferences @ @
_ 5 Open Variable « & Run and Time o 3
MNew New Open &J Compare Import Save Simulink Layout ﬁ Sat Path Help
Script - - Data Workspace @ Clear Workspace = L’é? Clear Commands Library - -

CODE | SIMULINE | ENVIRONMENT |

= = 5 & [/ » Users » hansha » Documents » MATLAB »
urrent Folder ® B i - jusers/nansha/Documents/MATLAB/level_tank.m

B | Name & level_tank.m | + |
New Falder - kic, clear 1
#) bode_ex.m 2 - Kp = 16.5;
abot?e_test.m 3- A _tank = 78.5;
] cylindar_surface.m 4
%] frek_test.m 5- A= [0, -1/A_tank; 0, 0I;
a Ievel_ta_nk.m | B = [Kp/A_tank; @l;
table_5|ze.m 7 - C=[1, @l:
%) testl.m 8 - D = lai; '
9
1@ - model = ss(A, B, C, D)
11
12 - step(model)
13
14
15 - H=tf(model)
16
17
18 - step(H)

MATLAB Course - Part I: Introduction to MATLAB

7 The MATLAB Environment

You should set your working folder as the Current Directory or set your
working folder as part of the search path, if you don’t MATLAB will not find
your files.

Search Path:

8 06 MATLAB R2014a
HOME PLOTS APPS EDITOR PUBLISH VIEW @
= | T New Variable Analyze Code for-] - (n (% Community
l'_"x'}!‘ Ell:b E [Find Files LJ}] E@ %ﬁ ¥ (CI5)) [0} Prafarances \'.’) o
a t[j Open Variable v &f Run and Time . _‘-? Request Support
New New Open |-l Compare Import Save e Simulink Layo! ﬁ Set Path Help
Script ¥ v Data Workspace [/ Clear Workspace ~ {74 Clear Commands v Library v - él:l Add-Ons v
FILE VARIABLE CODE SIMULINK | ENVIRONMENT RESOURCES

You need to use this if you want MATLAB to find your scripts and functions
you want to use.

8 .00 Set Path

All changes take effect immediately.
MATLAB search path:

[Add Folder...] M /Users/hansha/Documents /MATLAR

- 4 [Applications /MATLAB_R2014a.app/toolbox/matlab/demos
| Add with Subfolders... | 4\ [Applications /MATLAB_R2014a.app/toolbox/matlab/graph2d
4\ /Applications {MATLAB_R2014a.app/toolbox/matlab,/graph3d
4\ /[Applications /MATLAB_R2014a.app/toolbox/matlab/graphics
4\ /Applications {MATLAB_R2014a.app/toolbox/matlab/plottools
4 [Applications {MATLAB_R2014a.app/toolbox/matlab/scribe
4\ /Applications {MATLAB_R2014a.app/toolbox/matlab/specgraph
4\ /Applications {MATLAB_R2014a.app/toolbox/matlab, uitools
4 [Applications /MATLAB_R2014a.app/toolbox/local
4\ [Applications /MATLAB_R2014a.app,/toolbox/matlab/optimfun
4 [Applications {MATLAB_R2014a.app/toolbox/matlab/codetools
4\ [Applications /MATLAB_R2014a.app/toolbox/matlab/datafun
| Move to Bottom | 4\ /Applications /MATLAB_R2014a.app,/toolbox/matlab/datamanager
4 [Applications /MATLAB_R2014a.app/toclbox/matlab/datatypes
4\ [Applications /MATLAB_R2014a.app/tooclbox/matlab/elfun
4 [Applications (MATLAB_R2014a.app/toolbox/matlab/elmat
4\ /Applications /MATLAB_R2014a.app/toolbox/matlab/funfun
4\ /Applications {MATLAB_R2014a.app/toolbox/matlab/general

Ay fAemlicatiane IMATI AR BINT1A2 anm itanlbhav fraatlab faoida

Move to Top

Move Up

| Move Down |

| Remove |

@ | Save | Close Revert | Default |

2.5 Editor

The Editor is used to create scripts and m-files. Click the “*“New Script”
button in the Toolbar

MATLAB Course - Part I: Introduction to MATLAB

8 The MATLAB Environment

8 0.0 MATLAB R2014a

PUBLISH

EDITOR

-1 I'l . = 1] 17, New Variable Analyze Code oE (n % Community
EF) [Find Files &n 2 e ¥ & B @ preterences | (20 S
@Open Variable v t{) Run and Time - 3 Request Support
New New pen ||| Compare Import Save i 4 Simulink Layout ﬁs&‘ Path Help —
- Data Workspace E?CIearWorkspace ¥ 77 Clear Commands ~ Library v - §_EAdd—Onsv
FILE VARIABLE CODE SIMULINK ENVIRONMENT RESOURCES
<= = (5 3 [/ » Users » hansha » Documents » MATLAB » 8
Current Folder OB B Editor - /Users/hansha/Documents/MATLAB/level_tank.m ® x
L] NM‘“H | level_tank.m | untitled2 | + |
New Folder =
1- lc, clear [
) bode_ex.m 2 ﬁ 4 .
= - p = 16.5;
£ bode_test.m 3 At p .
> 3 = _tank = 78.5;
] cylindar_surface.m 4
‘
‘ﬂlf’e"l—‘e“i(’“ 5- A= [0, -1/A_tank; 0, 01;
2 eveltank.m 6- B = [Kp/A_tank; @l;
£ table_size.m 7 - =0, ol;
) testl.m TR
. 8 - D = [0];
9
10 - model = ss(A, B, C, D)
11
1 step(model)
13
14
15 - H=tf(model)
16
17
18 - step(H)

When you learn about m-files (scripts and functions) in a later chapter you
will be using this editor to enter your commands and save them.

Note! In the beginning of the course (chapter 1-5) we will only use the
Command Window. In chapter 6 we will start using the Editor.

MATLAB Course - Part I: Introduction to MATLAB

3 Using the Help
System in MATLAB

The Help system in MATLAB is quite comprehensive, so make sure you are
familiar with how the help system works.

6 006 MATLAB R2014a
EDITOR PUBLISH

E‘d’ L;‘ll] Lj @ Find Files L% E% i New Variable Lig Analyzs Code @ E @ Preference @ g3 Communay

= Open Variable v Run and Time =) Request Support
New New Open |zl Compare Import Save @ & Simulink Layout ﬁ Set Path Help —
Script v v Data Workspace [/ Clear Workspace v |’ Clear Commands ~ Library - ~ pAdd-Ons v
FILE [VARIABLE i CODE | SIMULINK | ENVIRONMENT RESOURCES
: : w ” . H .
when clicking the “Help” button, the following window appears:
800 Help
@ G e B[MATLAR | 4 | (8D Bl -
Contents = Search Documentation a
Documentation Center A
.
» Getting Started with MATLAB
Examples MATLAB
Releass Notes The Language of Technical Computing
Functions B
> Language Fundamentals Getting Started Examples Release Notes
> Mathematics > Language Fundamentals
» Graphics ‘Syniax, operators, data types, array indexing and manipulation
» Programming Scripts and Functions
» Data and File Management » Mathematics
» GUI Building Linear algebra, basic statistics, differentiation and integrals, Fourier transforms, and other mathematics
» Advanced Software Development
» Deskiop Environment

» Graphics
Two- and three-dimensional piots, data exploration and visualization techniques, images, printing, and graphics objects

» Progr ing Scripts and F
Program files, conirol flow, editing, debugging

» Data and File Management
Data import and export, workspace, files and folders

> GUI Building
Application development using GUIDE and callbacks

> A D

OB d code unit testing; exiemal interfaces to Java® , C/C++, .NET and other languages

> Desktop Environment
Preferences and settings, platiorm differences

Functions || PDF Documentation

© 19942014 The MathWorks, Inc. Terms of Use | Patents | Tragemarks | Acknowledgments

You may also type “Help” in the Command window:

10 Using the Help System in MATLAB

- HSNS) MATLAB R2014a

BELEES

PLOTS APPS EDITOR PUBLISH VIEW

r Lz, New Variable |s” Analyze Code oE 27 (% Community
@ od 3 L] Find Files ¥ Ha . = = @) Preferences @
@ Open Variable « {? Run and Time 3 Request Support
MNew Mew Open i__a Compare Import Save Simulink Layout ﬁ Set Path Help
Script = - Data Workspace @ Clear Workspace = [Clear Commands ~ Library - - él:lAdd-Clns -
FILE VARIABLE CODE SIMULINK ENVIRONMENT RESOURCES

4= = & = [/ » Users » hansha » Documents » MATLAE »

Current Folder ® T Editor - untitled2 ® x
B (Name & : | level tank.m | untitled2 |+ |
New Folder ="
1 =]
#) bode_ex.m

bode_test.m

[cylindar_surface.m
#) frek_test.m

#) level_tank.m

#] table_size.m

#) testl.m

- >> help
HELP topics:
Documents/MATLAB - (No table of contents file)
matlab/demos - Examples.
matlab/graph2d - Two dimensional graphs.
matlab/graph3d - Three dimensional graphs.
matlab/graphics - Handle Graphics.
matlab/plottools - Graphical plot editing tools
matlab/scribe - Annotatien and Plot Editing.
matlab/specqraph - Specialized graphs.
matlab/uitools - Graphical user interface components and tools
toolbox/local - General preferences and configuration information
matlab/optimfun - Optimization and root finding.
matlab/codetools - Commands for creating and debugging code
—

MATLAB answers with links to lots of Help topics. You may also type more
specific, e.g., “"Help elfun” (Elementary Math Functions), and MATLAB will
list all functions according to the specific category.

If you type “help <functionname>" you will get specific help about this
function.

You may also type “doc <topic>" to open the Help window on the
specific topic of interest.

Searching:

We can use the help keyword when we want to get help for a specific
function, but if we want to search for all functions, etc. with a specific
keyword you may use the lookfor command.

Example:

lookfor plot

[End of Example]

MATLAB Course - Part I: Introduction to MATLAB

4 MATLAB Basics

[nE] Before you start, you should watch the video “Getting Started with
MATLAB”

The video is available from:
https://www.halvorsen.blog/documents/teaching/courses/matlab/matlabl.php

4.1 Basic Operations

Variables:

Variables are defined with the assignment operator, *=". MATLAB is
dynamically typed, meaning that variables can be assigned without
declaring their type, and that their type can change. Values can come
from constants, from computation involving values of other variables, or
from the output of a function.

Example:

>> x = 17

X =

17

>> x = 'hat'

X =

hat

>> x = [3*%4, pi/2]
% =

12.0000 1.5708
>> y = 3*sin (x)

y:
-1.6097 3.0000

[End of Example]

Note! MATLAB is case sensitive! The variables x and X are not the same.

Note! Unlike many other languages, where the semicolon is used to
terminate commands, in MATLAB the semicolon serves to suppress the
output of the line that it concludes.

11

12 MATLAB Basics

As you see, when you type a semicolon (;) after the command, MATLAB
will not respond. This is very useful because sometimes you want MATLAB
to respond, while in other situations that is not necessary.

Built-in constants:

MATLAB have several built-in constants. Some of them are explained
here:

Name Description
i, 3 Used for complex numbers, e.qg., z=2+4i
pi T
inf o, Infinity
NaN Not A Number. If you, e.g., divide by zero, you get NaN

Naming a Variable Uniquely:

To avoid choosing a name for a new variable that might conflict with a
name already in use, check for any occurrences of the name using the
which command:

which -all wvariablename

Example:

>> which -all pi

built-in (C:\Matlab\R2007a\toolbox\matlab\elmat\pi)

You may also use the iskeyword command. This command causes
MATLAB to list all reserved names.

>> iskeyword

ans =
'break'
'case'
'catch’

'classdef'

MATLAB Course - Part I: Introduction to MATLAB

13 MATLAB Basics

'continue'

'else'!
'elseif'’
'end'

'for'
'function'’
'global'
lifl
'otherwise'
'persistent’
'return'
'switch'
vtryv
'while'

Note! You cannot assign these reserved names as your variable names.

Note! MATLAB allows you to reassign built-in function names as variable
names, but that is not recommended! - so be carefully when you select
the name of your variables!

Example:

>> sin=4
sin =
4

>> sin(3)

?2?? Index exceeds matrix dimensions.

In this example you have defined a variable “sin” - but “sin” is also a
built-in function - and this function will no longer work!

If you accidently do so, use the clear command to reset it back to normal.

[End of Example]

Task 1: Basic Operations

Type the following in the Command window:

>>y=16;
>>7=3;
>>y+z

MATLAB Course - Part I: Introduction to MATLAB

14 MATLAB Basics

Note! When you use a semicolon, no output will be displayed. Try the
code above with and without semicolon.

Note! Some functions display output even if you use semicolon, like plot,
etc.

Other basic operations are:

>>16-3
>>16/3
>>16*3

— Try them.

[End of Task]

Built-in Functions:

Here are some descriptions for the most used basic built-in MATLAB
functions.

Function Description Example
help MATLAB displays the help information available | >>help
he|p Display help about a specific function >>help plot
<function>

who, whos | who lists in alphabetical order all variables in e
the currently active workspace.

. - >>clear
clear Clear variables and functions from memory. elear
= - " >>x=[1 2 ; 3 4];
size Size of arrays, matrices e e (2
>>x=[1:1:101];
length Length of a vector S length (%)
format Set output format
- . >>A=[1 2;3 41;
d|sp Display text or array >>disp (A)
plot This function is used to create a plot >Pr=(1818101 5
>>plot (x)
>>y=sin (x);
>>plot (x,V)
clc Clear the Command window rels
rand Creates a random number, vector or matrix >>Eeng
>>rand (2,1)

. . >>x=[1:1:10]
max Find the largest number in a vector e ()
min Find the smallest number in a vector >>x=[1:1:10]

>>min (x)
>>x=[1:1:10]

mean Average or mean value omean (1)
A >>x=[1:1:10]

std Standard deviation >>std (x)

Before you start, you should use the Help system in MATLAB to read more
about these functions. Type “help <functionname>" in the Command
window.

MATLAB Course - Part I: Introduction to MATLAB

15 MATLAB Basics

Task 2: Statistics functions

Create a random vector with 100 random numbers between 0 and 100.
Find the minimum value, the maximum value, the mean and the standard
deviation using some of the built-in functions in MATLAB listed above.

[End of Task]

MATLAB Course - Part I: Introduction to MATLAB

16 MATLAB Basics

4.2 Arrays; Vectors and Matrices

@ Before you start, you should watch the video "Working with
Arrays”.

The video is available from:
https://www.halvorsen.blog/documents/teaching/courses/matlab/matlabl.php

Matrices and vectors (Linear Algebra) are the basic elements in MATLAB
and also the basic elements in control design theory. So, it is important
you know how to handle vectors and matrices in MATLAB.

A general matrix A may be written like this:

ai;; o Aim
. ° e Rnxm

ap1 *° Gpm

In MATLAB we type vectors and matrices like this:

=[5 &

A\ W/

— To separate rows, we use a semicolon “;

A\ S /4 AVIRAY

— To separate columns, we use a comma “,” or a space “ .

To get a specific part of a matrix, we can type like this:

>> A(2,1)
ans =
3

or:

>> A(:,1)
ans =

MATLAB Course - Part I: Introduction to MATLAB

17 MATLAB Basics
1
3

or:

>> A(2,:)

ans =
3 4

>> x = [1; 2; 3];
>>y = [4; 5; 6];
>> B = [x V]
B = 1 4

2 5

3 6

4.2.1 Colon Notation

The “colon notation” is very useful for creating vectors:

Final value

Starting value —1 17

X=[xi:dx:xf]

T

Increment

Example:

This example shows how to use the colon notation creating a vector and

do some calculations.

MATLAB Course - Part I: Introduction to MATLAB

18

MATLAB Basics

>>x=[0:0.1:1]";y=x."sin(x);

0 0 -[001 17
0.1000 0.0100

>>[x y] Starting value Final value
| | Increment |
ans =

0.2000 0.0397
0.3000 0.0887
0.4000 0.1558
0.5000 0.2397
0.6000 0.3388
0.7000 0.4510
0.8000 0.5739
0.9000 0.7050
1.0000 0.8415

[End of Example]

Task 3: Vectors and Matrices

Type the following vector in the Command window:

x

Type the following matrix in the Command window:

Type the following matrix in the Command window:

-1 2 0
C=14 10 -2

1 0 6

— Use Use MATLAB to find the value in the second row and the third

column of matrix C.

— Use MATLAB to find the second row of matrix C.

— Use MATLAB to find the third column of matrix C.

Deleting Rows and Columns:

[End of Task]

You can delete rows and columns from a matrix using just a pair of square

brackets [].

MATLAB Course - Part I: Introduction to MATLAB

19 MATLAB Basics

Example:
Given:
A= [—02 —13]

To delete the second column of a matrix A, use:

>>A=[0 1; -2 -371;
>>A(:,2) = []

[End of Example]

4.3 Tips and Tricks

Naming conversions:

When creating variables and constants, make sure you create a name that
is not already exists in MATLAB. Note also that MATLAB is case sensitive!
The variables x and X are not the same.

Use the which command to check if the name already exists: which -all
<your name>

Example:

>> which -all sin

built-in (C:\Matlab\R2007a\toolbox\matlab\elfun\Q@double\sin) %
double method

built-in (C:\Matlab\R2007a\toolbox\matlab\elfun\@single\sin) %
single method

Large or small nhumbers:

If you need to write large or small numbers, like 2x 10> , 7.5x 10~8you can

A\Y 14

use the “e” notation, e.g.:

>> 2eb
ans =

MATLAB Course - Part I: Introduction to MATLAB

20 MATLAB Basics

200000
>> 7.5e-8
ans =

7.5000e-008

Line Continuation:

For large arrays, it may be difficult to fit one row on one command line.
We may then split the row across several command lines by using the line
continuation operator “...".

Example:
>> x=[1 2 3 45 ...
6 78 9 10]
X =
1 2 3 4 5 6 7 8 9 10

Multiple commands on same line:

It is possible to type several commands on the same line. In some cases
this is a good idea to save space.

Example:

>> x=1,y=2,2z=3
X

1
y:

2
7 =

3

4.3.1 Array Operations

We have the following basic matrix operations:

- Addition

— Subtraction

* Multiplication
/ Division
Power

MATLAB Course - Part I: Introduction to MATLAB

21 MATLAB Basics

The basic matrix operations can be modified for element-by-element
operations by preceding the operator with a period. The modified
operations are known as array operations.

Given

A ::[a11 a12]’ _ [b11 b12]

az1 Q22 by by
Then

As B = [a11b11 a12b12]
az1by1 Agzby;

The elements of A.*B are the products of the corresponding elements of A
and B.

We have the following array operators:

- Addition

— Subtraction
Multiplication
A Division
Power

Example:

>> A = [1; 2; 3]

10
>> A*B
??? Error using ==> mtimes

Inner matrix dimensions must agree.

>> A.*B

MATLAB Course - Part I: Introduction to MATLAB

22 MATLAB Basics

[End of Example]

MATLAB Course - Part I: Introduction to MATLAB

5 Linear Algebra;
Vectors and Matrices

Linear Algebra is a branch of mathematics concerned with the study of
matrices, vectors, vector spaces (also called linear spaces), linear maps
(also called linear transformations), and systems of linear equations.

MATLAB are well suited for Linear Algebra. This chapter assumes you have
some basic understanding of Linear Algebra and matrices and vectors.

Here are some useful functions for Linear Algebra in MATLAB:

Function Description Example
rank Find the rank of a matrix. Provides an estimate of iii;ﬁi(i) !
the number of linearly independent rows or
columns of a matrix A.
" N . >>A=[1 2; 3 4]
det Find the determinant of a square matrix et ()
- " 5 : >>A=[1 2; 3 4]
inv Find the inverse of a square matrix et
. " " . >>A=[1 2; 3 4]
eig Find the eigenvalues of a square matrix eig (e
ones Creates an array or matrix with only ones Soones 22’ 5
eye Creates an identity matrix >>eye (2)
. - o . . >>A=[1 2; 3 4]
dlag Find the diagonal elements in a matrix NGy

Type “help matfun” (Matrix functions - numerical linear algebra) in the
Command Window for more information, or type “help elmat”
(Elementary matrices and matrix manipulation).

You may also type “help <functionname>" for help about a specific
function.

Before you start, you should use the Help system in MATLAB to read more
about these functions. Type “help <functionname>" in the Command
window.

5.1 Vectors

Given a vector x:

23

24 Linear Algebra; Vectors and Matrices

x=|."] € R"

Example:

Given:

The Transpose of vector x:

xT — [xl Xy ee xn] € Rlxn

[End of Example]

The Length of vector x:

x|l = v/xTx = fo FxZtetal

Example:

The length of a vector most makes sense for 2 or 3 dimensional vectors.
Given the following vector:
v = [3,4]

Note! Sometimes you also see it like this: v

MATLAB Course - Part I: Introduction to MATLAB

25 Linear Algebra; Vectors and Matrices

It can be visualized like this:

= N W

> X

In order to find the length of v we use Pythagoras like this:

lv| =/32+42=v/9+16=vV25=5

MATLAB:
>> v = [3,4]"
>> 1 = sqrt (372 + 472)

1 =
5

Or using the general formula shown above (which works for any
dimensions):

>> 1 = sqgrt(v'*v)
1 =
5}

Note!

>> length (v)
ans =

2

The built-in function length() don’t give the actual length of the vector but
finds number of elements in the vector or array, i.e., the size of the array.

[End of Example]

Orthogonality:

MATLAB Course - Part I: Introduction to MATLAB

26

Linear Algebra; Vectors and Matrices
xTy=0
5.2 Matrices
Given a matrix A:
aip A1m
A= | e pram
an1 Anm
Example:
1o 1
A_[—z —3]
>> A=[0 1;-2 -3]
A
0 1
=2 -3
[End of Example]
5.2.1 Transpose
The Transpose of matrix A:
a1 0 Am
AT = : :] € Rmxn
Am ° Anm
Example:
r_[0 177 _j0 -2
4 _[—2 —3] T —3]
>> A
ans =
0 =2
1 -3
[End of Example]

5.2.2 Diagonal

The Diagonal elements of matrix A is the vector

MATLAB Course - Part I: Introduction to MATLAB

27 Linear Algebra; Vectors and Matrices

a1
a .
diag(4) = | ;| € Rp=min(xm)
App
Example:
>> diag (A)
ans =
0
-3

[End of Example]

The Diagonal matrix A is given by:

A 0O 0
A= 0 /1.2 ' 0 € Rnxn
0 0 - A,
Given the Identity matrix I:
1 0 0
P 0f ¢ pram
0 0 1
Example:
>> eye (3)
ans =
1 0 0
0 1 0
0 0 1

[End of Example]

5.2.3 Triangular

Lower Triangular matrix L:

13

MATLAB Course - Part I: Introduction to MATLAB

28 Linear Algebra; Vectors and Matrices

Upper Triangular matrix U:
S
5.2.4 Matrix Multiplication

Given the matrices A € R™™ and B € R™P, then

C = AB € R™P
where
n
Cik =Zajlblk
=1
Example:
> A = [0 1; -2 -3]
A =
0 1
-2 =3
> B = [1 0;3 -2]
B =
0
3 -2
>> A*B
ans =
3 =2
-11 6

— Check the answer by manually calculating using pen & paper.

[End of Example]

Note!

Note!

MATLAB Course - Part I: Introduction to MATLAB

29 Linear Algebra; Vectors and Matrices

AB # BA
A(BC) = (AB)C
(A+B)C =AC + BC

C(A+B)=CA+CB

5.2.5 Matrix Addition

Given the matrices A € R™™ and B € R™™, then

C=A+Be R™M

— Check the answer by manually calculating using pen & paper.

[End of Example]

5.2.6 Determinant

Given a matrix A € R™", then the Determinant is given by:

det(4) = |Al

Given a 2x2 matrix:

A= [a11 a12] e R2x2

a1 Qp;
Then
det(4) = |A| = a;1a5, — ay1a4,
Example:

MATLAB Course - Part I: Introduction to MATLAB

30 Linear Algebra; Vectors and Matrices

A =

0 1

-2 =3
>> det (2)
ans =

2

— Check the answer by manually calculating using pen & paper.

[End of Example]

Notice that
det(AB) = det(4) det(B)
and

det(4T) = det (4)

Example:

>> det (A*B)
ans =

—4
>> det (A) *det (B)
ans =

-4
>> det (A'")
ans =

2
>> det (A)
ans =

2

[End of Example]

5.2.7 Inverse Matrices

The inverse of a quadratic matrix A € R™" is defined by:

A—l

AATl =414 =1

MATLAB Course - Part I: Introduction to MATLAB

31 Linear Algebra; Vectors and Matrices

For a 2x2 matrix we have:

a1 Ag2 2x2
A= € R
az1 Ay

The inverse A~! is then given by

1 a —-a
-1 _ 22 12 2x2
= € R
det (A) [—a21 aiq]

Example:
A =

0 1

-2 -3
>> inv (A)
ans =

-1.5000 -0.5000
1.0000 0

— Check the answer by manually calculating using pen & paper.
Notice that:
AATY=A"1A=1

[End of Example]

5.3 Eigenvalues

Given A € R™", then the Eigenvalues is defined as:

det(Al—A) =0

Example:
A =

0 1

-2 -3
>> eig (A)
ans =

-1

-2

— Check the answer by manually calculating using pen & paper.

MATLAB Course - Part I: Introduction to MATLAB

32 Linear Algebra; Vectors and Matrices

[End of Example]

Task 4: Matrix manipulation

In this task we will practice on entering matrices and perform basic matrix
operations.

Given the matrices 4, B and C:
10 1 1 o 11 -1
A_[_z _3]’ B_[3 _2]' C_[_z 2]
— Solve the following basic matrix operations using MATLAB:

e A+B

e A-B

o AT

e A1

e diag(A),diag(B)
e det(A),det(B)

e det(4AB)

o eig(4)

where eig = Eigenvalues, diag = Diagonal, det = Determinant
— Use MATLAB to “prove” the following:

e AB # BA

e A(BC) = (AB)C

e (A+B)C=AC+ BC

e C(A+B)=CA+CB

e det(4AB) = det(A4) det(B)
e det(4T) = det (4)

o AA'=A"14=1

where [is the unit matrix

By “proving”, I mean enter the left side in MATLAB, then enter the right
side, then check if you get the same results or not. In that way you have
“proved” it.

[End of Task]

5.4 Solving Linear Equations

MATLAB Course - Part I: Introduction to MATLAB

33 Linear Algebra; Vectors and Matrices

MATLAB can easily be used to solve a large amount of linear equations
using built-in functions.

When dealing with large matrices (finding inverse of A is time-consuming)
or the inverse doesn’t exist other methods are used to find the solution,
such as:

e Least Square method

e LU factorization

e Singular value Decomposition
e Etc.

In MATLAB we can also simply use the backslash operator “\"” in order to
find the solution like this:

x = A\b

Example:

Given the following equations:

X1+ 2x,=5
3x; +4x, =6
7x1 +8x, =9
We can set in on matrix form:
Ax =b

But as you know, it only works when A is a square matrix.

From the equations we find:

A=

1 2
3 4

7 8

g

Normally we can find the solution by taking the inverse of the A matrix:

x=A"1b

MATLAB Course - Part I: Introduction to MATLAB

34 Linear Algebra; Vectors and Matrices

As you can see, the A matrix is not a quadratic matrix, meaning we
cannot find the inverse of 4, thus x = A7*b will not work (try it in MATLAB
and see what happens).

Let’s try (just to verify that it is not working):

> A = [1 2; 3 4; 7 8];
>> b = [5;6;9];
>> x = inv (A) *b
Error using inv

Matrix must be square.

As expected, MATLAB cannot solve this because the A matrix is not
square.

So, we can solve it using the backslash operator “\":

A= 1[12; 3 4; 7 8];
b = [5;6;9];
x = A\b

This gives the answer:
X =
-3.5000
4.1786
Meaning x; = —3.5 and x, = 4.1786

Actually, when using the backslash operator “\"” in MATLAB it uses the LU
factorization as part of the algorithm to find the solution.

We could have used the known Least Square Method formula as well.
Given:
Ax =b

Then the Least Square Method formula is given by (how we can derive
this equation will not be shown here):

xLS = (ATA)_lATb

Let’s try:

MATLAB Course - Part I: Introduction to MATLAB

35 Linear Algebra; Vectors and Matrices

A= 1[12; 3 4; 7 8];
b = [5;6;9];
x 1ls = inv (A'*A) *A'*Db

This gives the same answer:
X =

-3.5000

4.1786

This means using the Least Square formula also works fine in this case. It
gives same results as using the backslash. "\" operator in this case. In
general, the backslash operator is better to use because it finds the best
way to solve the equations. MATLAB does the "dirty work" for you.

Task 5: Solving Linear Equations

Given the equations:

Xy +2x,=5
3x1+4x2=6

Set the equations on the following form:
Ax=0D>b
— Find A and b and define them in MATLAB.

Solve the equations, i.e., find x; x,, using MATLAB. It can be solved like
this:

Ax =b->x=A"1b

[End of Task]

MATLAB Course - Part I: Introduction to MATLAB

6 M-files; Scripts and
user-define functions

Scripts or m-files are text files containing MATLAB code. Use the MATLAB
Editor or another text editor to create a file containing the same
statements you would type at the MATLAB command line. Save the file
under a name that ends with “.m".

We can either create a Script or a Function. The difference between a
script and a function will be explained below. Both will be saved as m-
files, but the usage will be slightly different.

FTIL
@ Before you start, you should watch the video "Writing a MATLAB
Program”.

The video is available from:
https://www.halvorsen.blog/documents/teaching/courses/matlab/matlabl.php

Below we see the MATLAB Editor that we use to create Scripts and
Functions (both are saved as .m files):

8 0 0 MATLAB R2014a

HOME PLOTS APPS EDITOR PUBLISH VIEW @ E A ng @ @
= 7] New Variabl Analyze Cod T e :
L,ﬂ CE] D [a Find Files &l HE‘ £ New Variable Lg Anclyze © E @ Preferences Q) €3 Community

5% Open Variable & Run and Time 3 Request Support

New New JOpen 1) Compare Import Save = Simulink Layout ﬁSQtPa[h Help
Script ¥ v Data Workspace @Chﬂr\ﬂnrkspue - churCnmmnds v Library - - ﬁAdd—Ons -
FILE | VARIABLE CODE SIMULINK ENVIRONMENT RESOURCES
<= = (5 & [/ » Users » hansha » Documents » MATLAB » x
Current Folder OBl B Editor - /Users/hansha/Documents/MATLAB/level_tank.m
L] r:‘ameF‘!d | level_tank.m | untitled2 |+ |
ew Folder =
#) bode_ex.m ; i t‘ci ;;e;,r
bode_test.m 3- Apt_ K i ;8 53
7] cylindar_surface.m e At
& = 4
:Jjuffvtr‘f:;'kmm 5 A = [0, -1/A_tank; @, 0];
‘_] Sdigty 6 - B = [Kp/A_tank; 0];
%) table_size.m = 2
ﬂ(es(lm 7 c=1[1, 0];
. 8 - D = [e];
9
10 - model = ss(A, B, C, D)
11
12 - step(model)
13
14
58S H=tf(model)
16
17
18 - step(H)

6.1 Scripts vs. function Files

36

https://www.halvorsen.blog/documents/teaching/courses/matlab/matlab1.php

37 M-files; Scripts and user-define
functions

It is important to know the difference between a Script and a Function.

Scripts:

e A collection of commands that you would execute in the Command
Window
e Used for automating repetitive tasks

Functions:

e Operate on information (inputs) fed into them and return outputs

e Have a separate workspace and internal variables that is only valid
inside the function

e Your own user-defined functions work the same way as the built-in
functions you use all the time, such as plot(), rand(), mean(), std(),
etc.

MATLAB have lots of built-in functions, but very often we need to create
our own functions (these are called user-defined functions)

Below we will learn more about Scripts and Functions.

6.2 Scripts

A Script is a collection of MATLAB commands and functions that is bundled
together in a m-file. When you run the Script, all the commands are
executed sequentially.

The built-in Editor for creating and modifying m-files are shown below:

MATLAB Course - Part I: Introduction to MATLAB

38 M-files; Scripts and user-define
functions

B Editor - /Users/hansha/Documents/MATLAE/level_tank.m

: | level_tank.m | untitled2 | + |
1 - cle, clear |
2 - Kp = 16.5;
chl= A_tank = 78.5;
4
El= A= [0, -1/A_tank; @, @];
6 - B = [Kp/A_tank; @];
U= Cc = [1, el;
8 - D = Iel;
9
18 - model = ss(A, B, C, D)
11
12 - step(model)
13
14
15 - H=tf(model)
16
17
18 - step(H)]

In the Editor you create a sequence of MATLAB commands that you save
as a m-file (the file extension ends with .m). Push the “Run” button when
you want to run your program.

800 MATLAB R2014a
HOME EDITOR PUBLISH
Find Files Insert i ~ - -
EIT:I ﬁ E I:? E fx '(,,13) |> L@ L%]RunSactiDn (rD)
[l compare v Comment 9 ‘% %3 o GoTo v)
New Open Save — — Breakpoints Run un and I%Adwmcg Run and
- - v [=yPrint v I Indent 2| [z | Find = - - dvance Time
FILE L3 EDIT NAVIGATE EREAKPOINTS RUN
<= = 5 & [/ » Users » hansha » Documents » MATLAB »
Current Folder ® B Editor - /Users/hansha/Documents/MATLAB/level_tank.m
B (Name & : | level_tank.m | untitled2 | + |
. MNew Folder il= cle, clear
“) bode_ex.m 2 Kp = .
= - p = 16.5;
“) bode_test.m : At z .
- = _tank = 78.5;
) cylindar_surface.m a
&
‘ﬂf’ekl—‘e“i{m 5- A= [0, -1/A_tank; @, 0l;
o evel_tanx.m 6- B = [Kp/A_tank; @l;
“| table_size.m =N C= 1 el;
) testl.m ~ o
' 8- D = I8l;
9
10 - model = ss(A, B, C, D)
11
12 - step(model)
13
14
15 - H=tf(model)
16
17
18 - step(H)

MATLAB Course - Part I: Introduction to MATLAB

39 M-files; Scripts and user-define
functions

If the code contains errors or warning the MATLAB compiler will let you
know by displaying some colors symbols to the right in the Editor, as
shown on the Figure above.

Running a m-file in the Command window (just type the name of the m-
file and hit Enter to run the m-file):

" Editor - /Users/hansha/Documents/MATLAB/level_tank.m ®» x
[level_tank.m | untitled2 = | + | k
1= clc, clear |
2 - Kp = 16.5;
= A_tank = 78.5;
4
5 - A= [0, =1/A_tank; @, 8];
6 - B = [Kp/A_tank; @];
u|= c=1[1, o];
8 - D= Iel;
9
10 - model = ss(A, B, C, D)
11
12 - step({model)
13
14
15 - H=tf(model)
16
17
18 - step(H)

Command Window

fx >> level_tank|

You may open or edit a m-file using the open button in the toolbar.

An alternative is to type “"Edit <name of m-file>" from the Command
window.

Task 6: Script

MATLAB Course - Part I: Introduction to MATLAB

40 M-files; Scripts and user-define
functions

Create a Script (M-file) where you create a vector with random data and
find the average and the standard deviation

Run the Script from the Command window.

[End of Task]

6.3 Functions

MATLAB includes more than 1000 built-in functions that you can use, but
sometimes you need to create your own functions.

To define your own function in MATLAB, use the following syntax:

function outputs = function name (inputs)

o)

% documentation

Or in more detail:

function [x, y] = myfun(a, b, C) % Function definition line

H1 line -- A one-line summary of the function's purpose.

Help text -- One or more lines of help text that explain
how to use the function. This text is displayed when
the user types "help functionname".

af

of of of

% The Function body normally starts after the first blank line.
% Comments -- Description (for internal use) of what the
% function does, what inputs are expected, what outputs

% are generated. Typing "help functionname" does not display
% this text.
x = prod(a, b); % Start of Function code

The first line of a function M-file starts with the keyword function. It gives
the function name and order of arguments. In example above, we have 3
input arguments (i.e, a,b,c) and 2 output arguments (i.e, x,y).

The first line of the help text is the H1 line, which MATLAB displays when
you use the lookfor command or the help command.

MATLAB Course - Part I: Introduction to MATLAB

41 M-files; Scripts and user-define
functions

Note! It is recommended that you use lowercase in the function name.
You should neither use spaces; use an underscore *_" if you need to
separate words.

A Function can have one or more inputs and one or more outputs.

Below we see how to declare a function with one input and one output:
function output = functionName (input)

Below we see how to declare a function with multiple inputs and multiple
outputs:

function [outl,out2] functionName (inl,in2,..)

Example:

Here is a simple Example:

function answer = add(x,y)
% this function adds 2 numbers

answer = x + y;

Note! The function name (add) and the name of the file (“add.m”) need
to be identical.

800 MATLAB R2014a i
I Find Files Insert gl - ~ . I
EE] i % [? <& = D % |2] Run Section &
= Compare ~ Comment % ‘g % o GoTo = i
New Open Save = E Breakpoints Run Runand |4l Advance Runand
- - - Print « Indent =B Find ~ - ~ Advance Time
= =) 5%
FILE EDIT MNAVIGATE BREAKPOINTS RUN
4= = & = [0/ » Users » hansha » Documents » MATLAB » TR
Current Folder [GBl B Editor - /Users/hansha/Documents/MATLAB/add.m Workspace ®
E Name & E add.m + Name & Value
@N;;;l-o\der 1 function answer = add(x,y) o EHa [0,-0.0127;0,0]
ﬂ; d‘m 2 % This function adds 2 numbers [A_tank 78.5000
) boda—fx‘:n 3- answer = x + y; %ans ?0 2102:0]
ode_test.m B .. 3
cylindar_surface.m Hc [1,01
] frek_test.m Ho [4]
ﬂ level_tank.m H Ix1tf
‘j table_size.m Eﬂ Kp 16.5000
) testl.m model Ix1ss
Command Window ®
>> add(2,2)
ans =
Details hd 4
Jx ==
Select a file to view details
‘add ‘Ln 3 Col 16

You may use the function like this:

MATLAB Course - Part I: Introduction to MATLAB

42 M-files; Scripts and user-define
functions

o)

% Example 1:
add (2, 3)

% Example 2:
a = 4;
b = 6;

add (a,b) ;

% Example 3:
answer = add(a,b)

[End of Example]

You may create your own functions and save them as a m-file. Functions

are M-files that can accept input arguments and return output arguments.
Functions operate on variables within their own workspace, separate from
the workspace you access at the MATLAB command prompt.

Note! The name of the M-file and of the function should be the same!

Example:
Create a function called “linsolution” which solve Ax =b - x=A4"1b

Below we see how the m-file for this function looks like:

800 MATLAE R2014a P
HOME s EDITOR PUBLISH
[Find Files Insert el - - o b) =
2 oS &b - 2 B B s (2
(i) Compare ~ Comment % 4] 5 GoTa » =
New Open Save Breakpaints Run Runand |5 Advance Runand
- v v Print v Indent w2 | { Find = - ~ Advance [Time
FILE EDIT NAVIGATE | BREAKPOINTS RUN
<= = 5 3 [/ » Users » hansha » Documents » MATLAB » P
Current Folder [CHl B Editor - /Users/hansha/Documents/MATLAB/linsolution.m Workspace ®
B Name & | linsolution.m |+ | Name & Value
@N;;.-F—o\der 1 function x = linsolution(A,b) of [Ea [1.2:3.4]
‘j;od‘emaxm 2 % This function solves the problem Ax=b 5 A_tank :8‘5000
_ex. 3 ans
#] bode_test.m _ . H b [5:8]
cylindar_surface.m < % = inv(A)sbi| He [0.2102;0]
£ frek_test.m (==l 11,01
‘j level_tank.m Eﬂ D 4]
1 linsolution.m H Ix1tf
% table_size.m I Kp 16.5000
‘j testl.m model Ix1ss
I x [-4:4.5000]
+ Command Window @ |-
== A=[1 2; 3 4];
>> b=[5;61;
== x=linsolution(A,b)
x =
linsolution.m (Function v
-4.0000
This function solves the problem Ax=b 4.5000
linsolution(A, b)
X =
-4.0000
4.5000
fr o>
linsolution Ln 4 Col 14

MATLAB Course - Part I: Introduction to MATLAB

43 M-files; Scripts and user-define
functions

You may define A and b in the Command window and the use the
function on order to find x:

-4.0000
4.5000

After the function declaration (function [x] = linsolution(A,b)) in
the m.file, you may write a description of the function. This is done with
the Comment sign “%"” before each line.

From the Command window you can then type “help <function name>”
in order to read this information:

>> help linsolution
Solves the problem Ax=b using x=inv (A) *b

Created By Hans-Petter Halvorsen

[End of Example]

Naming a Function Uniquely:

To avoid choosing a name for a new function that might conflict with a
name already in use, check for any occurrences of the name using this
command:

which -all functionname

Task 7: User-defined function

Create a function calc_average that finds the average of two numbers.

Test the function afterwards as follows:

>>x = 2;
>>y = 4;
>>z = calc average (x,VY)

[End of Task]

Task 8: User-defined function

MATLAB Course - Part I: Introduction to MATLAB

44 M-files; Scripts and user-define
functions

Create a function circle that finds the area in a circle based on the input
parameter r (radius).

Run and test the function in the Command window.

[End of Task]

MATLAB Course - Part I: Introduction to MATLAB

/ Plotting

Plotting is a very important and powerful feature in MATLAB. In this
chapter we will learn the basic plotting functionality in MATLAB.

Plots functions: Here are some useful functions for creating plots:

Function Description Example
plot Generates a plot. plot(y) plots the columns of y o ;012;01:1]"
against the indexes of the columns. Splot (X, ¥)
figure Create a new figure window iiiiéﬁiZm
subplot Create subplots in a Figure. subplot(m,n,p) or PREENReE (2, 2, 1)
subplot(mnp), breaks the Figure window into an
m-by-n matrix of small axes, selects the p-th axes
for the current plot. The axes are counted along
the top row of the Figure window, then the second
row, etc.
grid Creates grid lines in a plot. iigig .
“grid on” adds major grid lines to the current plot. >>grid off
“grid off” removes major and minor grid lines from
the current plot.
axis Control axis scaling and appearance. “axis([xmin ii:’;:‘é’;‘fﬂ“ SmEE g el
xmax ymin ymax])” sets the limits for the x- and SSariie om
y-axis of the current axes.
title Add title to current plot >>title('this is a title’)
title('string")
xlabel Add xlabel to current plot P2 cats (HEane
xlabel('string")
ylabel Add ylabel to current plot >> ylabel ("temperature’)
ylabel('string")
legend | Creates a legend in the corner (or at a specified >> legend('temperature’)
position) of the plot
H™ >>hold on
hold Freezes the current plot, so that additional plots SSREp
can be overlaid

Type “help graphics” in the Command Window for more information, or
type “help <functionname>" for help about a specific function.

Before you start, you should use the Help system in MATLAB to read more

about these functions. Type “help <functionname>" in the Command

window.

Example:

Here we see some examples of how to use the different plot functions:

45

46 Plotting
>>x=[0:0.1:1]";
>>y=X."sin(x); A 447
>>plot(x,y) :: ;;[_qusilm‘l(l(; y2=sin(x): Dashed line for y1
title('Plot of x sin(x) vs x ' o 7 ' -dot i ;
:;‘Ilaéeltlxl) x sin(x) vs x ") o> plotixy 1, x,y2,-.) Dashed-dot line for y2
S>ylabel(y) >> text(0.1,0.85,'y_1 = x sin(x) ---)
»;mOg >> text(0.1,0.80,y_2 = sin(x) __")
>> xlabel('x'), ylabel('y_1 and y_2'"), grid on
(a) (a)
Plot of x sin(x) v§ X #— Title 0.9
08 ¥y = Xsin(x) == Py
08 ’ ¥y = sin(x) —.— ~ -
+—— Grid 0.7 /l ATt
e ’
0.6 0.6 v o
o Text indicating lines 1 e
205 § .
- y label z 0 T yat
04" T 04 e g
- P ” ,I
02 0 7 L
0.2 v -7
-/- f’d'
0 01~ e
0 0.2 0.4 0.6 0.8 1 0 s __,-"
X+ label 0 01 02 03 04 05 06 07 08 09 1
X

[End of Example]

FTLL
m Before you start using these functions, you should watch the video
“Using Basic Plotting Functions”.

The video is available from:
https://www.halvorsen.blog/documents/teaching/courses/matlab/matlabl.php

Task 9: Plotting

In the Command window (or use the Script Editor) in MATLAB window
input the time from t =0 seconds to t =10 seconds in increments of 0.1
seconds as follows:

>t = [0:0.1:107;

Then, compute the output y as follows:

>>y = cos (t);

Use the Plot command:

>>plot (t,vy)

[End of Task]

MATLAB Course - Part I: Introduction to MATLAB

https://www.halvorsen.blog/documents/teaching/courses/matlab/matlab1.php

47 Plotting

/.1 Plotting Multiple Data Sets in
One Graph

In MATLAB it is easy to plot multiple data set in one graph.

Example:

X 0:pi/100:2*pi;

sin (xX) ;

y
y2 = sin(x-.25);
y3 = sin(x-.5);
plot(x,vy, x,v2, x,y3)

This gives the following plot:

MATLAB Course - Part I: Introduction to MATLAB

48 Plotting

@00 Figure 1
File Edit View Insert Tools Desktop Window Help N

NS b KLO59EH- 2 08 O

-0.2 —

04 .

-0.6 F -

Another approach is to use the hold command:

x=0:0.01:2*pi;

plot(x, sin(x))
hold on

plot (x, cos(x))
hold off

This gives the following plot:

MATLAB Course - Part I: Introduction to MATLAB

49

Plotting

@00 Figure 1

File Edit View Insert Tools Desktop Window Help u

DdEde h ARA0DEH- 2 0H O

[End of Example]

You can also do the plotting in different plots using the figure()
command.

Example:

x=0:0.01:2*pi;
figure (1)
plot (x, sin(x))
figure (2)
plot (x, cos(x))

The results will be like this:

MATLAB Course - Part I: Introduction to MATLAB

50 Plotting
File Edit View Insert Tools Desktop Window Help &
DEdse h ACQSODLEA- 3 0EH a0
1 ~ File Edit View Insert Tools Desktop Window Help b
sl Dade h KA LEN- 32 0E O
oer 1=
04 as b
0z r \ 06 -
or 04|
s ol
a6 | sl
asr 04 -
2 - - 2 sl
-. L
o i 2 a4 : s -

[End of Example]

Task 10: Plot of dynamic system

Given the following differential equation:

X = ax

where a = —% ,where T is the time constant

The solution for the differential equation is:

x(t) = e*x,

Set T =5 and the initial condition x(0) =1

— Create a Script in MATLAB (.m file) where you plot the solution x(t) in
the time interval 0 <t <25

— Add Grid, and proper Title and Axis Labels to the plot.

[End of Task]

MATLAB Course - Part I: Introduction to MATLAB

51 Plotting

7.2 Displaying Multiple Plots in
one Figure - Sub-Plots

The subplot command enables you to display multiple plots in the same
window or print them on the same piece of paper. Typing “subplot(m,n,p)
partitions the figure window into an m-by-n matrix of small subplots and
selects the pth subplot for the current plot. The plots are numbered along
the first row of the figure window, then the second row, and so on.

4

The syntax is as follows:

subplot (m,n, p)

Example:

t = 0:pi/10:2*pi;

[X,Y,Z] = cylinder (4*cos(t));

subplot (2,2,1); mesh (X)

subplot (2,2,2); mesh(Y)

subplot (2,2,3); mesh(Z)
)

subplot (2,2,4); mesh(X,Y,Z)

This gives:

MATLAB Course - Part I: Introduction to MATLAB

52 Plotting

800 Figure 1
File Edit View Insert Tools Desktop Window Help ~

N Ede h AQROTDEE- @ 0H O

-
T

: T
. T TR -
: TR,
. . \l:::‘“u:ﬁ“tm !
: W L
05.. Y
0. Tl * "
- ki :
40 B
Rk T L
. Ly ik
o ““:\1'1.#'*‘::{'_'1.\'! 40

o T
20 1:-3}{‘1_\!‘!‘-"—"

H 20
0o

[End of Example]

Task 11: Sub-plots

Plot Sin(x) and Cos(x) in 2 different subplots.

Add Titles and Labels.

[End of Task]

/.3 Custimizing

There is lots of customizing you can do with plots, e.g., you can add a
title, x- and y-axis labels, add a legend and customize line colors and line-
styles.

The functions for doing this is; title, xlabel, ylabel, legend, etc.

Example:

x=0:0.1:2*pi;

MATLAB Course - Part I: Introduction to MATLAB

53 Plotting

plot(x, sin(x))

$Customize the Plot:
title('This is a Title')
xlabel ('This is a X label')
ylabel ('This is a y label')
legend('sin(x) ")

grid on

This gives the following plot:

800 Figure 1
File Edit View Insert Tools Desktop Window Help ~
NEde h ASLTUDER @ 0@ am

ThizizaTitle

This is a y labal

ThizizaXlabel

[End of Example]

For line colors and line-styles we have the following properties we can use
for the plot function:

Line Styles:

MATLAB Course - Part I: Introduction to MATLAB

54

Plotting

Marker specifiers:

Colors:

Specifier

Line Style

Salid line {default)

Dashed line

Diotted line

Dash-dot line

Specifier

Marker Type

Flus =ign

Circle

Asterisk

Puaint

Cross

'square' or s

Square

'digsmond' or 4

Diarnond

Upward-painting triangle

v Dowrweard-pointing triangle

> Right-painting triangle

< Left-pointing triangle
'pentagram' or p|Five-pointed star (pentagram)
'hexagram' or h |Six-pointed star (hexagram)

MATLAB Course - Part I: Introduction to MATLAB

55 Plotting
Specifier | Color
r Fed
o Green
2] Blue
@ Cyan
m Magenta
¥ el ow
k Black
w White

Example:

>> x=0:0.1:2*%pi;

>> plot(x, sin(x), 'r:o'")

This gives the following plot:

‘@00 Figure 1

File Edit View Insert Tools Desktop

Window Help

Dgde &

LEMBEL- 2 0E aO

0.6

0.6

0.4

0.2

-0.2

-0.4

-0.6

-0.8

[End of Example]

MATLAB Course - Part I: Introduction to MATLAB

56 Plotting

7.4 Other Plots

MATLAB offers lots of different plots.

Task 12: Other Plots

Check out the help for the following 2D functions in MATLAB: loglog,
semilogx, semilogy, plotyy, polar, fplot, fill, area, bar, barh, hist, pie,
errorbar, scatter.

— Try some of them, e.g., bar, hist and pie.

[End of Task]

MATLAB Course - Part I: Introduction to MATLAB

8 Flow Control and
Loops

8.1 Introduction

You may use different loops in MATLAB

e For loop
e While loop

If you want to control the flow in your program, you may want to use one
of the following:

e If-else statement
e Switch and case statement

It is assumed you know about For Loops, While Loops, If-Else and Switch
statements from other programming languages, so we will briefly show
the syntax used in MATLAB and go through some simple examples.

8.2 If-else Statement

The “if” statement evaluates a logical expression and executes a group of
statements when the expression is true. The optional “elseif” and else
keywords provide for the execution of alternate groups of statements. An
“end” keyword, which matches the “if”, terminates the last group of
statements. The groups of statements are delineated by the four
keywords—no braces or brackets are involved.

The general syntax is as follows:

1f expressionl
statementsl
elseif expression?
statements?2
else
statements3
end

57

58 Flow Control and Loops

Example:

Here are some simple code snippets using the if sentence:

n=5
if n > 2

M = eye(n)
elseif n < 2

M = zeros (n)
else

M = ones (n)
end
or.
n=5
if n == 5

M = eye (n)
else

M = ones (n)
end
Note! You have to use "if n == 5" -=not "if n = 5”

[End of Example]

Example:

if A == B,

Note! If A and B are scalars this works - but If A and B are matrices this
might not work as expected!

— Try it!

Use instead:

if isequal (A, B),

— Try it!
[End of Example]

Operators:

You may use the following operators in MATLAB:

Mathematical Operator Description MATLAB Operator
< Less Than <
< Less Than or Equal To <=

MATLAB Course - Part I: Introduction to MATLAB

59 Flow Control and Loops

> Greater Than

= Greater Than or Equal To >=
= Equal To ==
#* Not Equal To ~=

Logical Operators:

You may use the following logical operators in MATLAB:

Logical Operator MATLAB Operator
AND &
OR I

Task 13: If-else Statements

Given the second order algebraic equation:
ax’+bx+c=0

The solution (roots) is as follows:

(—b +Vb? — 4ac
, a#0
2a
c
X =9 —E, a=0,b=+0
?, a=0b=0,c#0
\ C, a=0,b=0,c=0

)

where @ - there is no solution, C - any complex number is a solution

— Create a function that finds the solution for x based on different input
values for a, b and ¢, e.qg.,

function x = solveeqg(a,b,c)

— Use if-else statements to solve the problems

— Test the function from the Command window to make sure it works as
expected, e.qg.,

>> a=0, b=2,c=1
>> solveeq(a,b,c)

Compare the results using the built-in function roots.

MATLAB Course - Part I: Introduction to MATLAB

60 Flow Control and Loops

Tip! For @, you can just type disp(‘there is no solution’) and for C you can
type disp(‘fany complex number is a solution’) — or something like that.

[End of Task]

8.3 Switch and Case Statement

The switch statement executes groups of statements based on the value
of a variable or expression. The keywords case and otherwise delineate
the groups. Only the first matching case is executed. There must always
be an end to match the switch.

The general syntax is as follows:

switch wvariable
case case valuel

statementsl
case case value?

statements?2

otherwise
statements
end

Example:

n=2
switch (n)
case 1
M = eye(n)
case 2
M = zeros (n)
case 3
M = ones (n)
end

[End of Example]

Task 14: Switch—-Case Statements

Create a function that finds either the Area or the circumference of a circle
using a Switch-Case statement

You can, e.g., call the function like this:

MATLAB Course - Part I: Introduction to MATLAB

61 Flow Control and Loops

>> r=2;
>> calccircl(r,1l) % 1 means area

>> calccircl(r,2) % 2 means circumference

[End of Task]

8.4 For loop

The For loop repeats a group of statements a fixed, predetermined
number of times. A matching end delineates the statements.

The general syntax is as follows:

for variable = initval:endval
statement
statement

end

Example:

m=5
for n = 1:m
r(n) = rank (magic(n)) ;

r

[End of Example]

Task 15: Fibonacci Numbers

In mathematics, Fibonacci numbers are the numbers in the following
sequence:

o,1,1,2,3,5, 8,13, 21, 34, 55, 89, 144, ...

By definition, the first two Fibonacci numbers are 0 and 1, and each
subsequent number is the sum of the previous two. Some sources omit
the initial O, instead beginning the sequence with two 1s.

In mathematical terms, the sequence Fn of Fibonacci numbers is defined
by the recurrence relation:

MATLAB Course - Part I: Introduction to MATLAB

62 Flow Control and Loops

Ja = fa1t oz

with seed values:

fo=0fi=1

— Write a function in MATLAB that calculates the N first Fibonacci
numbers, e.g.,

>> N=10;
>> fibonacci (N)
ans

g w N R~ R~ o

w N
S P oW

— Use a For loop to solve the problem.

Fibonacci numbers are used in the analysis of financial markets, in
strategies such as Fibonacci retracement, and are used in computer
algorithms such as the Fibonacci search technique and the Fibonacci heap
data structure. They also appear in biological settings, such as branching
in trees, arrangement of leaves on a stem, the fruitlets of a pineapple, the
flowering of artichoke, an uncurling fern and the arrangement of a pine
cone.

[End of Task]

8.5 While loop

The while loop repeats a group of statements an indefinite number of
times under control of a logical condition. A matching end delineates the
statements.

The general syntax is as follows:

while expression

MATLAB Course - Part I: Introduction to MATLAB

63 Flow Control and Loops

statements

end

Example:

m=5;

while m > 1
m=m - 1;
zeros (m)

end

[End of Example]

Task 16: While Loop

Create a Script or Function that creates Fibonacci Numbers up to a given
number, e.qg.,

>> maxnumber=2000;
>> fibonacci (maxnumber)

Use a While Loop to solve the problem.

[End of Task]

8.6 Additional Tasks

Here are some additional tasks about Loops and Flow control.

Task 17: For Loops

Extend your calc_average function from a previous task so it can
calculate the average of a vector with random elements. Use a For loop to
iterate through the values in the vector and find sum in each iteration:

mysum = mysum + x(i);

Test the function in the Command window

[End of Task]

MATLAB Course - Part I: Introduction to MATLAB

64 Flow Control and Loops

Task 18: If-else Statement

Create a function where you use the “if-else” statement to find elements
larger than a specific value in the task above. If this is the case, discard
these values from the calculated average.

Example discarding numbers larger than 10 gives:

x =

4 6 12
>> calc_ average (x)
ans =

5

[End of Task]

MATLAB Course - Part I: Introduction to MATLAB

O Mathematics

MATLAB is a powerful tool for mathematical calculations.

Type “help elfun” (elementary functions) in the Command window for
more information about basic mathematical functions.

9.1 Basic Math Functions

Some Basic Math functions in MATLAB: exp, sqrt, log, etc.— Look up
these functions in the Help system in MATLAB.

Task 19: Basic Math function

Create a function that calculates the following mathematical expression:
z=3x2+ {x2+y2+e"®

Test with different values for x and y.

[End of Task]

9.2 Statistics

Some Statistics functions in MATLAB: mean, max, min, std, etc.

— Look up these functions in the Help system in MATLAB.

Task 20: Statistics

Create a vector with random numbers between 0 and 100. Find the
following statistics: mean, median, standard deviation, minimum,
maximum and the variance.

[End of Task]

65

66 Mathematics

9.3 Trigonometric Functions

MATLAB offers lots of Trigonometric functions, e.g., sin, cos, tan, etc. —
Look up these functions in the Help system in MATLAB.

Note! Most of the trigonometric functions require that the angle is
expressed in radians.

Example:

>> sin(pi/4)
ans =
0.7071

[End of Example]

Task 21: Conversion

Since most of the trigonometric functions require that the angle is
expressed in radians, we will create our own functions in order to convert
between radians and degrees.

It is quite easy to convert from radians to degrees or from degrees to
radians. We have that:

27 [radians] = 360 [degrees]
This gives:

180
d [degrees]| = r[radians] - (T)

T
r[radians] = d[degrees] - (@)

— Create two functions that convert from radians to degrees (r2d(x))
and from degrees to radians (d2r(x)) respectively.

Test the functions to make sure that they work as expected.

[End of Task]

Task 22: Trigonometric functions on right triangle

Given right triangle:

MATLAB Course - Part I: Introduction to MATLAB

67 Mathematics

C

— Create a function that finds the angle A (in degrees) based on input
arguments (a,c), (b,c) and (a,b) respectively.

Use, e.g., a third input “type” to define the different types above.

— Use you previous function r2d() to make sure the output of your
function is in degrees and not in radians.

Test the functions to make sure it works properly.

Tip! We have that:

. a . a
sind=—,A= arcsu1(—)
c c

b b
CosA =—,A= arccos(—)
c c

tand = <, A = arct (a)
an = b, = arctan b
We may also need the Pythagoras' theorem:
c? =a?+ b?

Testing the function can be done like this in the Command Window:

>> a=5, b=8, c=sqgrt(a”~2+b”"2);
>> A = right triangle(a,c, 'sin'")
A =

32.0054
>> A = right triangle(b,c, 'cos"')
A =

32.0054
>> A = right triangle(a,b, 'tan')
A =

MATLAB Course - Part I: Introduction to MATLAB

68 Mathematics

32.0054

We also see that the answer in this case is the same, which is expected.

[End of Task]

Task 23: Law of cosines

Given:

Create a function where you find c using the law of cosines.
c? = a® + b? — 2ab cosC
Test the functions to make sure it works properly.

[End of Task]

Task 24: Plotting

Plot sin(6) and cos(0) for 0 < 6 < 2w in the same plot.

Make sure to add labels and a legend and use different line styles and
colors for the plots.

[End of Task]

9.4 Complex Numbers

Complex numbers are important in modelling and control theory.
A complex number is defined like this:

z=a+ib

MATLAB Course - Part I: Introduction to MATLAB

69 Mathematics

or

z=a+jb

Imaginary
Axis (Im)
r'y

N Real
0 a Axis(Re)

The imaginary unit i or j is defined as:
i=v-1

Where a is called the real part of z and b is called the imaginary part of
z, i.e.:

Re(z) =a, Im(z) =b

You may also imaginary humbers on exponential/polar form:

z = rel®

MATLAB Course - Part I: Introduction to MATLAB

70 Mathematics

Imaginary
Axis (Im)
A
2 .z =rel’
r i
6
! , Real
0 a Axis(Re)
where:
r=lzl =y a? +b?
0 = atan —

Note that a =rcos® and b =rsiné

Example:

Given the following complex number:
z=2+13

In MATLAB we may type:

>> z=2+31

or.

>> z=2+37]

[End of Example]

MATLAB Course - Part I: Introduction to MATLAB

71

Mathematics

The complex conjugate of z is defined as:

To add or subtract two complex humbers, we simply add (or subtract)

z¥=a—ib

their real parts and their imaginary parts.

In Division and multiplication, we use the polar form.

Given the complex humbers:

z, = el and z, = r,e/?

Multiplication:

Division:

Z3 =212y = rlrzej(91+92)

'rl ejgl

Z3 = = -
z, mnelf 1,

MATLAB functions:

Aa _ 1 i0:-0,)

Some Basic functions for complex humbers in MATLAB: abs, angle,
imag, real, conj, complex, etc.

Function Description Example
i,j Imaginary unit. As the basic imaginary unit iiz::fg
SQRT(-1), i and j are used to enter complex
numbers. For example, the expressions 3+2i,
3+4+2%*i, 34+42j, 3+2*j and 3+2*sqrt(-1) all have
the same value.
abs abs(x) is the absolute value of the elements of x. ii;;iti)l
When x is complex, abs(x) is the complex
modulus (magnitude) of the elements of X.
angle Phase angle. angle(z) returns the phase angles, ii:;;{il(z)
in radians
imag Complex imaginary part. imag(z) is the imaginary Zi}izi;i;(z)
part of z.
real Complex real part. real(z) is the real part of z. zi;i;;m
conj Complex conjugate. conj(x) is the complex iiji;iiconj .
conjugate of x. -
complex Construct complex result from real and imaginary z;a;if
parts. ¢ = complex(a,b) returns the complex SE
result A + Bi

MATLAB Course - Part I: Introduction to MATLAB

72 Mathematics

Look up these functions in the Help system in MATLAB.

Task 25: Complex numbers

Given two complex humbers

c=4+j3,d=1—j
Find the real and imaginary part of c and d in MATLAB.
— Use MATLAB to find ¢+d,c —d,cd and c/d.

Use the direct method supported by MATLAB and the specific complex
functions abs, angle, imag, real, conj, complex, etc. together with the
formulas for complex numbers that are listed above in the text (as you do
it when you should calculate it using pen & paper).

— Find also r and 6. Find also the complex conjugate.

[End of Task]

Task 26: Complex numbers

Find the roots of the equation:
x% + 4x + 13

We can e.g., use the solveeq function we created in a previous task.
Compare the results using the built-in function roots.

Discuss the results.

Add the sum of the roots.

[End of Task]

9.5 Polynomials

A polynomial is expressed as:
p(x) = p1x™ + Pox" T+ PpX + Prag

where p;,p,,ps3, ... are the coefficients of the polynomial.

MATLAB Course - Part I: Introduction to MATLAB

73 Mathematics

MATLAB represents polynomials as row arrays containing coefficients
ordered by descending powers.

Example:
Given the polynomial:
p(x) = —=5.45x* + 3.2x2 + 8x + 5.6

In MATLAB we write:

>> p=[-5.45 0 3.2 8 5.8]
p:
-5.4500 0 3.2000 8.0000 5.8000

[End of Example]

MATLAB offers lots of functions on polynomials, such as conv, roots,
deconv, polyval, polyint, polyder, polyfit, etc. — Look up these
functions in the Help system in MATLAB.

Task 27: Polynomials

Define the following polynomial in MATLAB:
p(x) = —2.1x* + 2x3 + 5x + 11

— Find the roots of the polynomial (p(x) = 0) (and check if the answers are
correct)

— Find p(x = 2)
Use the polynomial functions listed above.

[End of Task]

Task 28: Polynomials

Given the following polynomials:
py(x) =1+x—x?
py(x) =2+ x3
— Find the polynomial p(x) = p;(x) - p,(x) using MATLAB and find the roots

— Find the roots of the polynomial (p(x) = 0)

MATLAB Course - Part I: Introduction to MATLAB

74 Mathematics

— Find p(x =2)
— Find the differentiation/derivative of p,(x), i.e., p,’
Use the polynomial functions listed above.

[End of Task]

Task 29: Polynomial Fitting

Find the 6. order Polynomial that best fits the following function:
y = sin (x)
Use the polynomial functions listed above.

— Plot both the function and the 6. order Polynomial to compare the
results.

[End of Task]

MATLAB Course - Part I: Introduction to MATLAB

10 Additional Tasks

If you have time left or need more practice, solve the tasks below. Its
highly recommended to solve these tasks as well, since some of these will
most likely be part of the final test.

Task 30: User—-defined function

Create a function that uses Pythagoras to calculate the hypotenuse of a
right-angled triangle, e.g.:

function h = pyt(a,b)

Pythagoras theorem is as follows: ¢? = a? + b?

Note! The function should handle that a and b could be vectors.

[End of Task]

Task 31: MATLAB Script

Given the famous equation from Albert Einstein:
E = mc?
The sun radiates 385 x 10%*]/s of energy.

— Calculate how much of the mass on the sun is used to create this
energy per day.

75

76 Additional Tasks

— How many years will it take to convert all the mass of the sun
completely? Do we need to worry if the sun will be used up in our
generation or the next?

The mass of the sun is 2 x 103%kg

[End of Task]

Task 32: Cylinder surface area

Create a function that finds the surface area of a cylinder based on the
height (k) and the radius (r) of the cylinder.

[End of Task]

Task 33: Create advanced expressions in MATLAB

Create the following expression in MATLAB:

In(ax? + bx + ¢) — sin (ax? + bx + ¢)
4mtx? + cos (x — 2)(ax? + bx + ¢)

fG) =

Given a=1,b=3,c=5
— Find f(9)
(The answer should be f(9) = 0.0044)

Tip! You should split the expressions into different parts, such as:

MATLAB Course - Part I: Introduction to MATLAB

77 Additional Tasks

poly =ax?+bx +c
num =...

den =....

f=.

This makes the expression simpler to read and understand, and you
minimize the risk of making an error while typing the expression in
MATLAB.

[End of Task]

Task 34: Solving Equations

Find the solution(s) for the given equations:

x1+2x2=5
3x1+4x2=6
7x1 +8x, =9

[End of Task]

Task 35: Pre-allocating of variables and vectorization

Here we will use pre-allocating of variables and vectorization and compare
with using a For Loop.

We will use the functions tic and toc to find the execution time.

We will create a simple program that calculates y = cos(t) for t=1 to
100 000.

Create the following Script:

[©)

% Test 1: Using a For Loop
clear

tic

tmax=100000;

for t=1l:tmax

y(t,1)=cos(t);

MATLAB Course - Part I: Introduction to MATLAB

78 Additional Tasks

end

toc

— What was the execution time?

We will improve the Script by preallocating space for the variable y.
Create the following Script:

o)

% Test 2: For Lopp with preallocating
clear

tic

tmax=100000;

e

y=zeros (tmax,1); % preallocating

for t=1:tmax
y(t,1l)=cos(t);
end

toc

— What was the execution time?

We will improve the Script further by removing the For Loop by using
vectorization instead:

% Test 3: Vectorization
clear
tic

tmax = 100000;

+
Il

1l:tmax; %$vectorization

y = cos(t);

toc

— What was the execution time?

Discuss the result.

MATLAB Course - Part I: Introduction to MATLAB

79 Additional Tasks

[End of Task]

Task 36: Nested For Loops

Given the matrices A € R™™ and B € R™P, then
C =AB € R™P

where

n

Cik = Z a;i by

=1

In MATLAB it is easy to multiply two matrices:

> A = [0 1;-2 -3]
A:
0 1
-2 =3
> B = [1 0;3 -2]
B:
0
3 -2
>> A*B
ans =
3 -2
-11 6

But her you will create your own function that multiply two matrices:

function C = matrixmult (A, B)

Tip! You need to use 3 nested For Loops.

[End of Task]

Task 37: Prime Numbers

The first 25 prime numbers (all the prime numbers less than 100) are:

MATLAB Course - Part I: Introduction to MATLAB

80 Additional Tasks

2,3,5,7,11, 13,17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71,
73,79, 83, 89, 97

By definition a prime number has both 1 and itself as a divisor. If it has
any other divisor, it cannot be prime.

A natural number (1, 2, 3, 4, 5, 6, etc.) is called a prime number (or a
prime) if it is greater than 1 and cannot be written as a product of two
natural numbers that are both smaller than it.

Create a MATLAB Script where you find all prime numbers between 1 and
200.

Tip! I guess this can be done in many ways, but one way is to use 2
nested For Loops.

[End of Task]

Task 38: Prime Number Function

The first 25 prime numbers (all the prime numbers less than 100) are:

2,3,5,7,11, 13,17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71,
73,79, 83, 89, 97

By definition, a prime number has both 1 and itself as a divisor. If it has
any other divisor, it cannot be prime.

A natural number (1, 2, 3, 4, 5, 6, etc.) is called a prime number (or a
prime) if it is greater than 1 and cannot be written as a product of two
natural numbers that are both smaller than it.

Create a MATLAB function where you check if a given number is a prime
number or not.

You can check the function in the Command Window like this:

>> number = 4

>> checkifprime (number)

[End of Task]

MATLAB Course - Part I: Introduction to MATLAB

81

Additional Tasks

MATLAB Course - Part I: Introduction to MATLAB

Appendix A: MATLAB
Functions

This Appendix gives an overview of the most used functions in this course.

Built-in Constants

MATLAB have several built-in constants. Some of them are explained
here:

Name Description
i, J Used for complex numbers, e.g., z=2+4i
pi T
inf oo, Infinity
NaN Not A Number. If you, e.g., divide by zero, you get NaN

Basic Functions

Here are some descriptions for the most used basic MATLAB functions.

Function Description Example
help MATLAB displays the help information available | >>Pelp
help Display help about a specific function >>help plot
<function>

who, whos | who lists in alphabetical order all variables in :Z}ﬁgs
the currently active workspace.

. . >>clear
clear Clear variables and functions from memory. el
- B . >>x=[1 2 ; 3 4];
size Size of arrays, matrices ey
>>x=[1:1:101];
length Length of a vector o length (x)
format Set output format
- N >>A=[1 2;3 4];
dISp Display text or array Sdisp (A)
" . n >>x=[1:1:10];
p|0t This function is used to create a plot e o)
>>y=sin(x);
>>plot (x,y)
clc Clear the Command window >els
f >>rand
rand Creates a random number, vector or matrix el
" . >>x=[1:1:10]
max Find the largest number in a vector o)

82

83 Appendix A: MATLAB Functions
. - A x=[1:1:10]
min Find the smallest number in a vector i;ﬂin(x)
x=[1:1:10]
mean Average or mean value e)
i >>x=[1:1:10]
std Standard deviation ned ()

Linear Algebra

Here are some useful functions for Linear Algebra in MATLAB:

Function Description Example
rank Find the rank of a matrix. Provides an estimate of iii;&i(i) 9 4l

the number of linearly independent rows or

columns of a matrix A.

" . : >>A=[1 2; 3 4]

det Find the determinant of a square matrix et ()
. " " : >>A=[1 2; 3 4]
inv Find the inverse of a square matrix i ()

. " . . >>A=[1 2; 3 4]
eig Find the eigenvalues of a square matrix eiq (2
ones Creates an array or matrix with only ones Ziggiz gzl)
eye Creates an identity matrix >>eye(2)

. n . : A >>A=[1 2; 3 4]
d.ag Find the diagonal elements in a matrix i

Type “help matfun” (Matrix functions - numerical linear algebra) in the
Command Window for more information, or type “help elmat”
(Elementary matrices and matrix manipulation).

You may also type “help <functionname>" for help about a specific

function.

Plotting

Plots functions: Here are some useful functions for creating plots:

Function Description Example
plot Generates a plot. plot(y) plots the columns of y j -)Eoig;mﬂ“
against the indexes of the columns. Splot (X, ¥)
figure Create a new figure window iiﬁg“jzzm
subplot Create subplots in a Figure. subplot(m,n,p) or PREENISE (2, 2 1)
subplot(mnp), breaks the Figure window into an
m-by-n matrix of small axes, selects the p-th axes
for the current plot. The axes are counted along
the top row of the Figure window, then the second
row, etc.
grid Creates grid lines in a plot. iigig o
“grid on” adds major grid lines to the current plot. | S 5vig ofs
“grid off” removes major and minor grid lines from
the current plot.

MATLAB Course - Part I: Introduction to MATLAB

84 Appendix A: MATLAB Functions

axis Control axis scaling and appearance. “axis([xmin i:’;i:‘é;f;m HER gandln yamens))
xmax ymin ymax])” sets the limits for the x- and Soosdle om
y-axis of the current axes.

title Add title to current plot sreitle(ithis ds a title!)
title('string")

xlabel Add xlabel to current plot = b (e)
xlabel('string")

ylabel Add ylabel to current plot >> ylabel ('temperature’)
ylabel('string")

Iegend Creates a legend in the corner (or at a specified 2> degimel(’ tenpera tree"”)
position) of the plot

hold Freezes the current plot, so that additional plots e en,
can be overlaid

Type “help graphics” in the Command Window for more information, or
type “help <functionname>" for help about a specific function.

Operators:

You may use the following operators in MATLAB:

Mathematical Operator Description MATLAB Operator
< Less Than <
< Less Than or Equal To <=
> Greater Than >
> Greater Than or Equal To >=
= Equal To ==
#* Not Equal To ~=

Logical Operators

You may use the following logical operators in MATLAB:

Logical Operator MATLAB Operator

AND

&

OR

Complex Numbers

Functions used to create or manipulate complex numbers.
Function Description Example
i, Imaginary unit. As the basic imaginary unit iizjii;

SQRT(-1), i and j are used to enter complex
numbers. For example, the expressions 3+2i,
3+2%*i, 3+2j, 3+2*j and 3+2*sqgrt(-1) all have
the same value.

MATLAB Course - Part I: Introduction to MATLAB

85

Appendix A: MATLAB Functions

abs abs(x) is the absolute value of the elements of x. | 72272+

When x is complex, abs(x) is the complex

modulus (magnitude) of the elements of X.

>>z=2+41

ang|e :Dnh?assi:r?gle. angle(z) returns the phase angles, >>:ng1el(z)
H i i i i i i >>z=2+41
imag gg:?%lfe; imaginary part. imag(z) is the imaginary S imag (2)
real Complex real part. real(z) is the real part of z. Z;:i;;m
conj Complex conjugate. conj(x) is the complex iz:i;iicon, .

conjugate of x. - ’
complex | Construct complex result from real and imaginary iiiii

parts. ¢ = complex(a,b) returns the complex
result A + Bi

>>z=complex (a,Db)

MATLAB Course - Part I: Introduction to MATLAB

Hans-Petter Halvorsen

E-mail: hans.p.halvorsen@usn.no

Blog: http://www.halvorsen.blog

University of South-Eastern Norway

WWW.UsN.No

mailto:hans.p.halvorsen@usn.no
http://www.halvorsen.blog/
http://www.usn.no/

Introduction to MATLAB

	Preface
	Table of Contents
	1 Introduction
	2 The MATLAB Environment
	2.1 Command Window
	2.2 Command History
	2.3 Workspace
	2.4 Current Folder
	2.5 Editor

	3 Using the Help System in MATLAB
	4 MATLAB Basics
	4.1 Basic Operations
	Task 1: Basic Operations
	Task 2: Statistics functions

	4.2 Arrays; Vectors and Matrices
	4.2.1 Colon Notation
	Task 3: Vectors and Matrices

	4.3 Tips and Tricks
	4.3.1 Array Operations

	5 Linear Algebra; Vectors and Matrices
	5.1 Vectors
	5.2 Matrices
	5.2.1 Transpose
	5.2.2 Diagonal
	5.2.3 Triangular
	5.2.4 Matrix Multiplication
	5.2.5 Matrix Addition
	5.2.6 Determinant
	5.2.7 Inverse Matrices

	5.3 Eigenvalues
	Task 4: Matrix manipulation

	5.4 Solving Linear Equations
	Task 5: Solving Linear Equations

	6 M-files; Scripts and user-define functions
	6.1 Scripts vs. function Files
	6.2 Scripts
	Task 6: Script

	6.3 Functions
	Task 7: User-defined function
	Task 8: User-defined function

	7 Plotting
	Task 9: Plotting
	7.1 Plotting Multiple Data Sets in One Graph
	Task 10: Plot of dynamic system

	7.2 Displaying Multiple Plots in one Figure – Sub-Plots
	Task 11: Sub-plots

	7.3 Custimizing
	7.4 Other Plots
	Task 12: Other Plots

	8 Flow Control and Loops
	8.1 Introduction
	8.2 If-else Statement
	Task 13: If-else Statements

	8.3 Switch and Case Statement
	Task 14: Switch-Case Statements

	8.4 For loop
	Task 15: Fibonacci Numbers

	8.5 While loop
	Task 16: While Loop

	8.6 Additional Tasks
	Task 17: For Loops
	Task 18: If-else Statement

	9 Mathematics
	9.1 Basic Math Functions
	Task 19: Basic Math function

	9.2 Statistics
	Task 20: Statistics

	9.3 Trigonometric Functions
	Task 21: Conversion
	Task 22: Trigonometric functions on right triangle
	Task 23: Law of cosines
	Task 24: Plotting

	9.4 Complex Numbers
	Task 25: Complex numbers
	Task 26: Complex numbers

	9.5 Polynomials
	Task 27: Polynomials
	Task 28: Polynomials
	Task 29: Polynomial Fitting

	10 Additional Tasks
	Task 30: User-defined function
	Task 31: MATLAB Script
	Task 32: Cylinder surface area
	Task 33: Create advanced expressions in MATLAB
	Task 34: Solving Equations
	Task 35: Pre-allocating of variables and vectorization
	Task 36: Nested For Loops
	Task 37: Prime Numbers
	Task 38: Prime Number Function

	Appendix A: MATLAB Functions
	Built-in Constants
	Basic Functions
	Linear Algebra
	Plotting
	Logical Operators
	Complex Numbers

